The probability of tossing heads on all of the first six tosses of a fair coin is 0.56, or 0.015625. The probability of tossing heads on at least one of the first six tosses of a fair coin is 1 - 0.56, or 0.984375.
3 out of 6
This is a binomial probability distribution The probability of exactly 2 heads in 50 coin tosses of a fair coin is 1.08801856E-12. If you want to solve this for how many times 50 coin tosses it would take to equal 1 time for it to occur, take the reciprocal, which yields you would have to make 9.191019648E11 tosses of 50 times to get exactly 2 heads (this number is 919,101,964,800 or 919 billion times). If you assume 5 min for 50 tosses and 24 hr/day tossing the coin, it would take 8,743,360 years. That is the statistical analysis. As an engineer, looking at the above analysis, I would say it is almost impossible flipping the coin 50 times to get exactly 2 heads or I would not expect 2 heads on 50 coin tosses. So, to answer your question specifically, I would say none.
This is a binomial probability distribution The probability of exactly 2 heads in 50 coin tosses of a fair coin is 1.08801856E-12. If you want to solve this for how many times 50 coin tosses it would take to equal 1 time for it to occur, take the reciprocal, which yields you would have to make 9.191019648E11 tosses of 50 times to get exactly 2 heads (this number is 919,101,964,800 or 919 billion times). If you assume 5 min for 50 tosses and 24 hr/day tossing the coin, it would take 8,743,360 years. That is the statistical analysis. As an engineer, looking at the above analysis, I would say it is almost impossible flipping the coin 50 times to get exactly 2 heads or I would not expect 2 heads on 50 coin tosses. So, to answer your question specifically, I would say none.
252/1024 or 0.246. One method of calculating it is this: The total number of outcomes possible by tossing a coin 10 times is 2 to the 10th, which is 1024. In addition, getting 5 heads in 10 tosses is like arranging 5 identical objects in 10 spaces (the remaining 5 spaces are by default Tails), which can be done in 10C5 ways, which is 252. So the probability of getting 5 heads is 252/1024.
The probability of tossing heads on all of the first six tosses of a fair coin is 0.56, or 0.015625. The probability of tossing heads on at least one of the first six tosses of a fair coin is 1 - 0.56, or 0.984375.
1/16
The conditional probability is 1/4.
In a large enough number of tosses, it is a certainty (probability = 1). In only the first three tosses, it is (0.5)3 = 0.125
The probability of tossing 6 heads in 6 dice is 1 in 26, or 1 in 64, or 0.015625. THe probability of doing that at least once in six trials, then, is 6 in 26, or 6 in 64, or 3 in 32, or 0.09375.
Every time a coin is tossed there is a 50 / 50 chances of it coming up heads. There is no rule that says tossing it 100 or 6 times will change this.
The probability is 0, since there will be some 3-tosses in which you get 0, 1 or 3 heads. So not all 3-tosses will give 2 heads.
3 out of 6
The probability that a coin will land on heads - at least once - in six tosses is 0.9844
Pr(At least one head in three tosses) = 1 - Pr(No heads in three tosses) = 1 - Pr(Three tails in three tosses) = 1 - (1/2)*(1/2)*(1/2) = 1 - 1/8 = 7/8 or 0.875 or 87.5%
Heads+Heads ; Heads+Tails ; Tails+Tails
Coin tosses are what we call Independent Events, meaning that the results of one toss have no effect on the next toss or any thereafter. Therefore the probability of each toss is 1/2. If, however, you want to know the probability of tossing two coins, and each coin landing heads-up, you simply multiply their probabilities together, resulting in 1/4.