answersLogoWhite

0


Best Answer

1

User Avatar

Hyman Stokes

Lvl 10
3y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

14y ago

Sin2x + Cos2x =1

You can rearrange this to say: Cos2x = 1 - Sin2x

Put this in place of Cos2x in the original equation and it should be easier :)

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you solve 2 cos squared x - sinx - 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you solve csc x-sin x equals cos x cot x?

cscx-sinx=(cosx)(cotx) 1/sinx-sinx=(cosx)(cosx/sinx) (1/sinx)-(sin^2x/sinx)=cos^2x/sinx cos^2x/sinx=cos^2x/sinx Therefore LS=RS You have to remember some trig identities when answering these questions. In this case, you need to recall that sin^2x+cos^2x=1. Also, always switch tanx cotx cscx secx in terms of sinx and cosx.


Is 1- cos 2 x 1 plus cos 2 x equals sin squared x cos squared x an identity?

No, (sinx)^2 + (cosx)^2=1 is though


How do you express the term 1-csc squared x all over sin x cot x to cos x?

(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x


What is the derivative of the square root of 1-sinx?

√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]


If cos and theta 0.65 what is the value of sin and theta?

You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.


How do you differentiate sine x squared?

Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)


How do you prove the following equation the quantity of sin theta divided by 1 minus cos theta minus the quantity 1 plus cos theta divided by sin theta equals 0?

You will have to bear with the angle being represented by x because this browser will not allow characters from other alphabets!sin^2x + cos^2x = 1=> sin^2x = 1 - cos^x = (1 + cosx)(1 - cosx)Divide both sides by sinx (assuming that sinx is not zero).=> sinx = (1 + cosx)(1 - cosx)/sinxDivide both sides by (1 - cosx)=> sinx/(1 - cosx) = (1 + cosx)/sinx=> sinx/(1 - cosx) - (1 + cosx)/sinx = 0


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx


How do you integrate sinx divide sinx plus cosx?

1/2(x-ln(sin(x)+cos(x)))


How do you solve cos theta subtract cos squared theta divide 1 plus cos theta?

The question contains an expression but not an equation. An expression cannot be solved.


Integral of cosine squared x?

Integral of cos^2x=(1/2)(cosxsinx+x)+CHere is why:Here is one method: use integration by parts and let u=cosx and dv=cosxdxdu=-sinx v=sinxInt(udv)=uv-Int(vdu) so uv=cosx(sinx) and vdu=sinx(-sinx)so we have:Int(cos^2(x)=(cosx)(sinx)+Int(sin^2x)(the (-) became + because of the -sinx, so we add Int(vdu))Now it looks not better because we have sin^2x instead of cos^2x,but sin^2x=1-cos^2x since sin^2x+cos^2x=1So we haveInt(cos^2x)=cosxsinx+Int(1-cos^2x)=cosxsinx+Int(1)-Int(cos^2x)So now add the -Int(cos^2x) on the RHS to the one on the LHS2Int(cos^2x)=cosxsinx+xso Int(cos^2x)=1/2[cosxsinsx+x] and now add the constant!final answerIntegral of cos^2x=(1/2)(cosx sinx + x)+C = x/2 + (1/4)sin 2x + C(because sin x cos x = (1/2)sin 2x)Another method is:Use the half-angle identity, (cos x)^2 = (1/2)(1 + cos 2x). So we have:Int[(cos x)^2 dx] = Int[(1/2)(1 + cos 2x)] dx = (1/2)[[Int(1 dx)] + [Int(cos 2x dx)]]= (1/2)[x + (1/2)sin 2x] + C= x/2 +(1/4)sin 2x + C