The flagpole is 15.92 metres, approx.
Use the tangent ratio: tan = 22.5/34 = 45/68 tan-1(45/68) = 33.49518467 degrees Angle of elevation = 33o29'42.66''
If we assume the the flagpole makes a 90 degree angle with the ground, then the angle of elevator for the sun is 34.778°
First, find the ratio of fencepost-height : shadow which is 1.6 : 2.6 . This can also be written as a fraction, 1.6/2.6 . Then, multiply the flagpole's shadow by this ratio: 31.2 x 1.6/2.6 = 19.2 The flagpole is 19.2m high. The trigonometry way: On the imaginary right angled triangle formed by the fencepost and its shadow, let the angle at which the hypotenuse meets the ground = θ sinθ = 1.6/2.6 sinθ = /31.2 x/31.2 = 1.6/2.6 2.6x = 31.2 * 1.6 = 49.92 x = 19.2 The flagpole is 19.2m high.
Not enough information has been given to solve this problem such as: What is the angle of elevation?
To find the angle of elevation of the sun, we can use the tangent function. The tangent of an angle is equal to the opposite side (height of the tree) divided by the adjacent side (length of the shadow). So, tan(angle) = height of the tree / length of the shadow. Plugging in the values, we get tan(angle) = 40 / 58. Taking the arctan of both sides gives us the angle, so the angle of elevation of the sun is approximately 33.56 degrees.
If you also know its shadow then you can work out the angle of elevation
36 degrees
It is nearly 40 feet
When the angle of elevation equals 45 degrees. tan-1(1) = 45 degrees.
The statue is 6/2 = 3 times the length of its shadow. The flagpole is 3 times its shadow ie the flagpole is 3*10 = 30 metres.
Ten is to two as 40 is to x, yielding: 200ft.
(Height of the building)/(length of the shadow) = tangent of 31° .Height = 73 tan(31°) = 43.9 feet (rounded)
Using trigonometry its height is 12 feet
Use the tangent ratio: tan = 22.5/34 = 45/68 tan-1(45/68) = 33.49518467 degrees Angle of elevation = 33o29'42.66''
5
If we assume the the flagpole makes a 90 degree angle with the ground, then the angle of elevator for the sun is 34.778°
To solve this problem, we can set up a proportion using the similar triangles formed by the flagpole and its shadow, and the mailbox and its shadow. The height of the flagpole to its shadow is 30 feet to 12 feet, which simplifies to 5:2. Using this ratio, we can determine the height of the mailbox by setting up the proportion 5/2 = x/1.5 (converting 18 inches to feet). Solving for x, the height of the mailbox would be 3.75 feet.