answersLogoWhite

0

Sorry, but cos(50)sin(40) - cos(40)sin(50) is -0.1736, which is not even close to sin(90) which is 1.

This does not work in radians, either. Please restate your question.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Trigonometry

How do you prove that 2 sin 3x divided by sin x plus 2 cos 3x divided by cos x equals 8 cos 2x?

You need to know the trigonometric formulae for sin and cos of compound angles. sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y) and cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y) Using these, y = x implies that sin(2x) = sin(x+x) = 2*sin(x)cos(x) and cos(2x) = cos(x+x) = cos^2(x) - sin^2(x) Next, the triple angle formulae are: sin(3x) = sin(2x + x) = 3*sin(x) - 4*sin^3(x) and cos(3x) = 4*cos^3(x) - 3*cos(x) Then the left hand side = 2*[3*sin(x) - 4*sin^3(x)]/sin(x) + 2*[4*cos^3(x) - 3*cos(x)]/cos(x) = 6 - 8*sin^2(x) + 8cos^2(x) - 6 = 8*[cos^2(x) - sin^2(x)] = 8*cos(2x) = right hand side.


How do you show that sinxcosxtanx equals 1-cos2x?

-1


If a cos theta plus b sin theta equals 8 and a sin theta - b cos theta equals 5 show that a squared plus b squared equals 89?

Well, darling, if we square the first equation and the second equation, add them together, and do some algebraic magic, we can indeed show that a squared plus b squared equals 89. It's like a little math puzzle, but trust me, the answer is as sassy as I am.


Is sin 2x equals 2 sin x cos x an identity?

YES!!!! Sin(2x) = Sin(x+x') Sin(x+x') = SinxCosx' + CosxSinx' I have put a 'dash' on an 'x' only to show its position in the identity. Both x & x' carry the same value. Hence SinxCosx' + CosxSinx' = Sinx Cos x + Sinx'Cosx => 2SinxCosx


How tan9-tan27-tan63 tan81 equals 4?

tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4

Related Questions

How do you prove this trigonometric relationship sin3A equals 3sinA cos 2 A - sin 3 A?

sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)


How do you prove sin x tan x equals cos x?

You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.


Sec - cos equals tansin?

Prove that tan(x)sin(x) = sec(x)-cos(x) tan(x)sin(x) = [sin(x) / cos (x)] sin(x) = sin2(x) / cos(x) = [1-cos2(x)] / cos(x) = 1/cos(x) - cos2(x)/ cos(x) = sec(x)-cos(x) Q.E.D


How would you prove left cosA plus sinA right times left cos2A plus sin2A right equals cosA plus sin3A?

You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn → cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.


How do you verify the identity of cos θ tan θ equals sin θ?

To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED


Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


Sin 15 plus cos 105 equals?

Sin 15 + cos 105 = -1.9045


How do you proof the formula sin2A equals 2sinAcosA?

First, note that sin(a+b)=sin(a)cos(b)+sin(b)cos(a)[For a proof, see: www.mathsroom.co.uk/downloads/Compound_Angle_Proof.pptFor the case of b=a, we have:sin (a+a)=sin(a)cos(a)+sin(a)cos(a)sin (2a)=2*sin(a)cos(a)


If Sin equals x and Cos equals y then x squared equals what function of y?

If x = sin θ and y = cos θ then: sin² θ + cos² θ = 1 → x² + y² = 1 → x² = 1 - y²


How can you prove that 1-2 cosine squared over sine times cosine is equal to tangent minus cotangent?

sin2 + cos2 = 1 So, (1 - 2*cos2)/(sin*cos) = (sin2 + cos2 - 2*cos2)/(sin*cos) = (sin2 - cos2)/(sin*cos) = sin2/(sin*cos) - cos2/(sin*cos) = sin/cos - cos-sin = tan - cot


If sin x - cos x equals 1 over 3 what is sin x?

Sin[x] = Cos[x] + (1/3)


If fx equals cossinx2 then f prime equals?

f(x)=cos(sin(x2)) [u(v)]' = u'(v) * v' so f'(x) = cos'(sinx(x2)) * sin'(x2) * (x2)' f'(x) = -sin(sin(x2)) * cos(x2) * 2x = -2x sin(sin(x2)) cos(x2)