* What are the exponential equivalents of hyperbolics? * How do hyperbolics relate to standard trig functions? * What shape does cosh produce? * Why does cosh grow faster than sinh? * What are the derivatives and integrals of various functions?
Chat with our AI personalities
sinh(x) = ½[ex-e-x]
In all there are [at least] 24 trigonometric functions and ratios. Half of these are circular and the other half are hyperbolic. Sine and Cosine are basic trigonometric funtions, abbreviated as sin and cos. Tangent is the third basic ratio defined as Sin/Cos. For each of these three, there is a corresponding reciprocal function: Sine -> Cosecant (cosec or csc) Cosine -> Secant (sec) Tangent -> Cotangent (cot). Each of the above six has an inverse function, defined on an appropriate domain. They all are named by adding the prefix "arc", for example arcsin, which is usually written as sin-1. The above are the circular functions. Each one of them has a corresponding hyperbolic equivalent. These are named by adding the suffix, "h", thus cosh, sech, arccosh [= cosh-1], etc.
The trigonometric functions give ratios defined by an angle. Whenever you have an angle and a side in right triangle, you can find all the other angles and sides using the six trigonometric functions and their inverses. The link below demonstrates the relationship between functions.
Yes, that is why they are called "principal". The domains are restricted so that the functions become injective.
There are several topics under the broad category of trigonometry. * Angle measurements * Properties of angles and circles * Basic trigonometric functions and their reciprocals and co-functions * Graphs of trigonometric functions * Trigonometric identities * Angle addition and subtraction formulas for trigonometric functions * Double and half angle formulas for trigonometric functions * Law of sines and law of cosines * Polar and polar imaginary coordinates.