Without an "equals" sign somewhere, no question has been asked,
so there's nothing there that needs an answer.
Is it the sum that you're looking for ?
csc(x) + cot(x) = 1/sin(x) + cos(x)/sin(x) = [1 + cos(x)] / sin(x)
Chat with our AI personalities
There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.
It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)
They are co-functions meaning that 90 - sec x = csc x.
cot 70 + 4 cos 70 = cos 70 / sin 70 + 4 cos 70 = cos 70 (1/sin 70 + 4) = cos 70 (csc 70 + 4) Numerical answer varies, depending on whether 70 is in degrees, radians, or grads.
Sin(30) = 1/2 Sin(45) = root(2)/2 Sin(60) = root(3)/2 Cos(30) = root(3)/2 Cos(45) = root(2)/2 Cos(60) = 1/2 Tan(30) = root(3)/3 Tan(45) = 1 Tan(60) = root(3) Csc(30) = 2 Csc(45) = root(2) Csc(60) = 2root(3)/3 Sec(30) = 2root(3)/3 Sec(45) = root(2) Sec(60) = 2 Cot(30) = root(3) Cot(45) = 1 Cot(60) = root(3)/3