12 - 5(n-1)
nth term
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
Find the formula of it.
If the sequence is non-linear, you need to establish how it is defined.
The nth term is: 4n
i dont get it
If you mean 3, 6, 9, 12 then the nth term is 3n
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
Three or more terms of a sequence are needed in order to find its nth term.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).