answersLogoWhite

0


Best Answer

If you interpret "whole numbers" as "integers", then yes. If you interpret "whole numbers" as "non-negative integers", then no.

User Avatar

Wiki User

โˆ™ 2014-11-12 11:06:22
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.75
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
848 Reviews

Add your answer:

Earn +20 pts
Q: Is the whole number closed under subtraction?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Is subtraction closed under the set of whole number?

Why, yes, it is.


Is the set of whole number closed under subtraction?

Yes, it is.


Why is the set of positive whole numbers closed under subtraction?

The set of positive whole numbers is not closed under subtraction! In order for a set of numbers to be closed under some operation would mean that if you take any two elements of that set and use the operation the resulting "answer" would also be in the original set.26 is a positive whole number.40 is a positive whole number.However 26-40 = -14 which is clearly not a positive whole number. So positive whole numbers are not closed under subtraction.


Is the set of integers closed under subtraction?

yes, because an integer is a positive or negative, rational, whole number. when you subject integers, you still get a positive or negative, rational, whole number, which means that under the closure property of real numbers, the set of integers is closed under subtraction.


What is an example of a counterexample for the difference of two whole numbers is a whole number?

There is no counterexample because the set of whole numbers is closed under addition (and subtraction).


Is the set of whole numbers closed under subtraction?

It depends on your definition of whole numbers. The classic definition of whole numbers is the set of counting numbers and zero. In this case, the set of whole numbers is not closed under subtraction, because 3-6 = -3, and -3 is not a member of this set. However, if you use whole numbers as the set of all integers, then whole numbers would be closed under subtraction.


What is always true about whole numbers?

They form a closed set under addition, subtraction or multiplication.


What do interger's allow you to do that whole numbers do not?

Integers are closed under subtraction, meaning that any subtraction problem with integers has a solution in the set of integers.


True or False The set of whole numbers is closed under subtraction Why?

A set is closed under a particular operation (like division, addition, subtraction, etc) if whenever two elements of the set are combined by the operation, the answer is always an element of the original set. Examples: I) The positive integers are closed under addition, because adding any two positive integers gives another positive integer. II) The integers are notclosed under division, because it is not true that an integer divided by an integer is an integer (as in the case of 1 divided by 5, for example). In this case, the answer depends on the definition of "whole numbers". If this term is taken to mean positive whole numbers (1, 2, 3, ...), then the answer is no, they are not closed under subtraction, because it is possible to subtract two positive whole numbers and get an answer that is not a positive whole number (as in the case of 1 - 10 = -9, which is not a positive whole number)


What is the set of whole numbers closed by?

If you mean the set of non-negative integers ("whole numbers" is a bit ambiguous in this sense), it is closed under addition and multiplication. If you mean "integers", the set is closed under addition, subtraction, multiplication.


Is whole numbers are closed under division?

No, whole numbers are not closed under division. It is possible to divide one whole number by another whole number and get a result which is not a whole number, for example, 1/2. One divided by two is a half.


What do you mean by 'whole number are closed under addition'?

The sum of any two whole numbers is a whole number.

People also asked