sin squared
Multiply both sides by sin(1-cos) and you lose the denominators and get (sin squared) minus 1+cos times 1-cos. Then multiply out (i.e. expand) 1+cos times 1-cos, which will of course give the difference of two squares: 1 - (cos squared). (because the cross terms cancel out.) (This is diff of 2 squares because 1 is the square of 1.) And so you get (sin squared) - (1 - (cos squared)) = (sin squared) + (cos squared) - 1. Then from basic trig we know that (sin squared) + (cos squared) = 1, so this is 0.
cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)
tan θ = sin θ / cos θ sec θ = 1 / cos θ sin ² θ + cos² θ = 1 → sin² θ - 1 = - cos² θ → tan² θ - sec² θ = (sin θ / cos θ)² - (1 / cos θ)² = sin² θ / cos² θ - 1 / cos² θ = (sin² θ - 1) / cos² θ = - cos² θ / cos² θ = -1
One solution. (cos x)2 - 2cos x = 3 Factor: (cos x - 3)(cos x + 1)= 0 cos x = {-1, 3} Solve: For cos x = -1, x = 180 deg No solution for cos x = 3
22
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
1. Anything divided by itself always equals 1.
Sin squared is equal to 1 - cos squared.
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
sin2 x = (1/2)(1 - cos 2x) cos2 x = (1/2)(1 + cos 2x) Multiplying both you get (1/4) (1 - cos2 2x) Which is equal to (1/4) (1 - (1/2) (1 + cos 4x) = (1/8) (2 - 1 - cos 4x) = (1/8) (1 - cos 4x) Or If it is the trigonomic function, sin squared x and cosine squared x is equal to one
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)