Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
No.
integral of radical sinx
sin(t) = 2/3 sin2(t) + cos2(t) = 1 so cos(t) = ± sqrt[1 - sin2(t)] but because t is in the first quadrant, cos(t) > 0 so cos(t) = + sqrt[1 - sin2(t)] = sqrt[1 - 4/9] = sqrt[5/9] = sqrt(5)/3 Then sec(t) = 1/cos(t) = 1/sqrt(5)/3 = 3/sqrt(5) = 3*sqrt(5)/5
Note that for sec²(x) - tan²(x) = 1, we have: -tan²(x) = 1 - sec²(x) tan²(x) = sec²(x) - 1 Rewrite the expression as: ∫ (sec²(x) - 1) dx = ∫ sec²(x) dx - ∫ 1 dx Finally, integrate each expression to get: tan(x) - x + K where K is the arbitrary constant
Tan^2
It also equals 13 12.
1 - sin2(q) = cos2(q)dividing through by cos2(q),sec2(q) - tan2(q) = 1
Ut is equual to tan(theta) / (sec(theta) + 1)
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
zero
No.
For such simplifications, it is usually convenient to convert any trigonometric function that is not sine or cosine, into sine or cosine. In this case, you have: sin theta / sec theta = sin theta / (1/cos theta) = sin theta cos theta.
If tan theta equals 2, then the sides of the triangle could be -2, -1, and square root of 5 (I used the Pythagorean Theorem to get this). From this, sec theta is negative square root of 5. It is negative because theta is in the third quadrant, where cosine, secant, sine, and cosecant are all negative.
By converting cosecants and secants to the equivalent sine and cosine functions. For example, csc theta is the same as 1 / sin thetha.
copy this and paste in your browsers address window http://www.wolframalpha.com/input/?i=tan+theta+%2B+sec+theta+%3D1
sin(theta) = 15/17, cosec(theta) = 17/15 cos(theta) = -8/17, sec(theta) = -17/8 cotan(theta) = -8/15 theta = 2.0608 radians.