The derivative of (sin (theta))^.5 is (cos(theta))/(2sin(theta))
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).
The four roots are cos(theta)+i*sin(theta) where theta = pi/4, 3*pi/4, 5*pi/4 and 7*pi/4.
For such simplifications, it is usually convenient to convert any trigonometric function that is not sine or cosine, into sine or cosine. In this case, you have: sin theta / sec theta = sin theta / (1/cos theta) = sin theta cos theta.
sin (theta) = [13* sin (32o)]/8 = 13*0.529919264/8 = 0.861118804 [theta] = sin-1 (0.861118804) [theta] = 59.44o
The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.The only real solution is theta = 0For theta < 0 square root of 3 theta is not defined.For theta > 0, sin theta increases slower than 3*theta and so the sum is always negative.
The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).
You are supposed to use the chain rule for this. First step: derivative of root of sin2x is (1 / (2 root of sin 2x)) times the derivative of sin 2x. Second step: derivative of sin 2x is cos 2x times the derivative of 2x. Third step: derivative of 2x is 2. Finally, you need to multiply all the parts together.
It's 1/2 of sin(2 theta) .
It is 2*sin(theta)*sin(theta) because that is how multiplication is defined!
The four roots are cos(theta)+i*sin(theta) where theta = pi/4, 3*pi/4, 5*pi/4 and 7*pi/4.
For such simplifications, it is usually convenient to convert any trigonometric function that is not sine or cosine, into sine or cosine. In this case, you have: sin theta / sec theta = sin theta / (1/cos theta) = sin theta cos theta.
sin (theta) = [13* sin (32o)]/8 = 13*0.529919264/8 = 0.861118804 [theta] = sin-1 (0.861118804) [theta] = 59.44o
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).
2 sin^2 theta = 1/4 sin^2 theta = 1/8 sin theta = sqrt(1/8) theta = arcsin(sqrt(1/8))
4Sin(theta) = 2 Sin(Theta) = 2/4 = 1/2 - 0.5 Theta = Sin^(-1) [0.5] Theta = 30 degrees.