4Sin(theta) = 2
Sin(Theta) = 2/4 = 1/2 - 0.5
Theta = Sin^(-1) [0.5]
Theta = 30 degrees.
4Sin(x)Cos(x) = 2(2Sin(x)Cos(x)) = 2Sin(2x) ( A Trig. identity.
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
Remember use the Pythagorean Trig/ Identity. Sin^(2)(Theta) + Cos^(2)(Theta) = 1 Algebraically rearrange Sin^(2)(Theta) = 1 - Cos^(2)(Theta) Substitute Sin^(2)(Theta) = 1 - 0.65^(2) Factor Sin^(2)(Theta) = ( 1- 0.65 )( 1 + 0.65) Sin^(2)(Theta) = (0.35)(1.65) Sin^(2)(Theta) = 0.5775 Sin(Theta) = sqrt(0.5775) Sin(Theta) = 0.759934207.... Theta = Sun^(-1)(0.759934207...) Theta = 49.45839813 degrees.
If two equal forces ( F ) are acting at an angle ( \theta ), the resultant ( R ) can be calculated using the formula ( R = F \sqrt{2(1 + \cos\theta)} ). Given that the resultant is ( \sqrt{2} F ), we can set up the equation ( \sqrt{2} F = F \sqrt{2(1 + \cos\theta)} ). Dividing through by ( F ) (assuming ( F \neq 0 )), we have ( \sqrt{2} = \sqrt{2(1 + \cos\theta)} ). Squaring both sides gives ( 2 = 2(1 + \cos\theta) ), which simplifies to ( \cos\theta = 0 ). Therefore, the angle ( \theta ) between the two forces is ( 90^\circ ).
-0.5736
4Sin(x)Cos(x) = 2(2Sin(x)Cos(x)) = 2Sin(2x) ( A Trig. identity.
It is 2*sin(theta)*sin(theta) because that is how multiplication is defined!
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
The secant of an angle (2\theta), denoted as (\sec(2\theta)), is the reciprocal of the cosine of that angle. It can be expressed mathematically as (\sec(2\theta) = \frac{1}{\cos(2\theta)}). The value of (\sec(2\theta)) will depend on the specific angle (2\theta) and can be found using trigonometric identities or a calculator.
The expression (\cos^2(90^\circ - \theta)) can be simplified using the co-function identity, which states that (\cos(90^\circ - \theta) = \sin(\theta)). Therefore, (\cos^2(90^\circ - \theta) = \sin^2(\theta)). This means that (\cos^2(90^\circ - \theta)) is equal to the square of the sine of (\theta).
Remember use the Pythagorean Trig/ Identity. Sin^(2)(Theta) + Cos^(2)(Theta) = 1 Algebraically rearrange Sin^(2)(Theta) = 1 - Cos^(2)(Theta) Substitute Sin^(2)(Theta) = 1 - 0.65^(2) Factor Sin^(2)(Theta) = ( 1- 0.65 )( 1 + 0.65) Sin^(2)(Theta) = (0.35)(1.65) Sin^(2)(Theta) = 0.5775 Sin(Theta) = sqrt(0.5775) Sin(Theta) = 0.759934207.... Theta = Sun^(-1)(0.759934207...) Theta = 49.45839813 degrees.
96 degrees Let theta represent the measure of the angle we are trying to find and theta' represent the measure of its supplement. From the problem, we know: theta=theta'+12 Because supplementary angles sum to 180 degrees, we also know: theta+theta'=180 Substituting the value from theta in the first equation into the second, we get: (theta'+12)+theta'=180 2*theta'+12=180 2*theta'=180-12=168 theta'=168/2=84 Substituting this value for theta' back into the first equation, we get: theta+84=180 theta=180-84=96
No, not necessarily. Cosine theta is equal to 1 only when theta is equal to zero and multiples of 2 pi radians or multiples of 360 degrees. This is because cosine theta is hypotenuse over adjacent, and the ratio 1 only occurs at 0, 360, 720, etc. or 0, 2 pi, 4 pi, etc.
(in a past paper it asks u to solve this for -180</=theta<180, so I have solved it) Tan theta =-1, so theta = -45. Use CAST diagram to find other values of theta for -180</=theta<180: Theta (in terms of tan) = -ve, other value is in either S or C. But because of boundaries value can only be in S. So other value= 180-45=135. Do the same for sin. Sin theta=2/5 so theta=23.6 CAST diagram, other value in S because theta (in terms of sin)=+ve. So other value=180-23.6=156.4.
because sin(2x) = 2sin(x)cos(x)
whats the big doubt,cot/tan+1= 1+1= 2
[]=theta 1. sin[]=0.5sin[] Subtract 0.5sin[] from both sides.2. 0.5sin[]=0. Divide both sides by 0.5.3. Sin[] =0.[]=0 or pi (radians)