answersLogoWhite

0

the cyclic integral of this is zero

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: How cyclic integral of a point function is zero?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the zero of a function and how does it relate to the functions graph?

A zero of a function is a point at which the value of the function is zero. If you graph the function, it is a point at which the graph touches the x-axis.


What is the corner point of a graph of an absolute value equation?

It is sometimes the point where the value inside the absolute function is zero.


Can you Give an example of bounded function which is not Riemann integrable?

Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.


How do you find the minimum or maximum of a function?

By taking the derivative of the function. At the maximum or minimum of a function, the derivative is zero, or doesn't exist. And end-point of the domain where the function is defined may also be a maximum or minimum.


What are the zeros of a linear function?

The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.