answersLogoWhite

0


Best Answer

the cyclic integral of this is zero

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How cyclic integral of a point function is zero?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the zero of a function and how does it relate to the functions graph?

A zero of a function is a point at which the value of the function is zero. If you graph the function, it is a point at which the graph touches the x-axis.


What is the corner point of a graph of an absolute value equation?

It is sometimes the point where the value inside the absolute function is zero.


Can you Give an example of bounded function which is not Riemann integrable?

Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.


How do you find the minimum or maximum of a function?

By taking the derivative of the function. At the maximum or minimum of a function, the derivative is zero, or doesn't exist. And end-point of the domain where the function is defined may also be a maximum or minimum.


What are the zeros of a linear function?

The zeros, or roots, of a linear function is the point at which the line touches the x-axis. Since a linear function is a straight line, it has a maximum of one root (zero). The zero of a function can be determined by the highest degree (power) of the function. Since linear functions are only raised to the power of one, one is the total number of times the line can touch the x-axis. If you function is a horizontal line, it has no root, or zero.

Related questions

What is difference between path function and point function in thermodyanaMICS?

A path function in thermodynamics depends on the path taken to reach a particular state, such as work and heat, while a point function depends only on the state of the system, like temperature, pressure, and internal energy. Path functions are not uniquely determined by the initial and final states, while point functions are determined by the state variables of the system at a specific moment regardless of how the system reached that state.


What are integral zeros?

The integral zeros of a function are integers for which the value of the function is zero, or where the graph of the function crosses the horizontal axis.


What is integral zero?

The definite integral of any function identically equal to zero between any two points is zero. Integral is the area under the graph of the given function. Sometimes the terms "integral" or "indefinite integral" are used to refer to the general antiderivative of a function, especially in many textbooks. In this case, the indefinite integral is equal to an arbitrary constant, and it is important to distinguish between these two cases.


How do you integrate periodic functions?

Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.


What are integres?

The integral zeros of a function are integers for which the value of the function is zero, or where the graph of the function crosses the horizontal axis.


What is the zero of a function and how does it relate to the functions graph?

A zero of a function is a point at which the value of the function is zero. If you graph the function, it is a point at which the graph touches the x-axis.


Where is the zero of any function location on the coordinate plane?

The zero of a function is a point where the function evaluates to zero. If you express "y" as a function of "x", i.e. y = f(x), then for a zero of the function, the y-coordinate is 0. In other words, the corresponding point is on the x-axis.


Why does you put c after integration?

When you find an indefinite integral of a function (ie, the integral of a function without integration limits) you are actually finding the antiderivative of that function. In other words, you are finding the function whose derivative is the function 'inside' the integral sign. Recall that the derivative of a constant is zero. The point here is that you add the 'c' to acknowledge the fact that when the derivative of the result of your integration effort is taken to get the original function it could, or would, have been followed by some unknown constant value that disappeared upon differentiation. That constant is denoted by the 'c'.


Why does you put plus c after integration?

When you find an indefinite integral of a function (ie, the integral of a function without integration limits) you are actually finding the antiderivative of that function. In other words, you are finding the function whose derivative is the function 'inside' the integral sign. Recall that the derivative of a constant is zero. The point here is that you add the 'c' to acknowledge the fact that when the derivative of the result of your integration effort is taken to get the original function it could, or would, have been followed by some unknown constant value that disappeared upon differentiation. That constant is denoted by the 'c'.


Why you use even and odd function in mathematics?

If you know that a function is even (or odd), it may simplify the analysis of the function, for several purposes. One example is the calculation of definite integrals: for an odd function, the integral of a function from (-x) to (x) (note 1) is zero; for an even function, this integral is twice the integral of the function from (0) to (x). Note 1: That is, the area under the function; for negative values, this "area" is taken as negative) is


If a function is equal to zero when x is zero is the function considered defined at that point?

Yes, if the function is equal to zero at x=0, the function is considered defined at that point. The function's value at x=0 does not impact its overall definition.


How can I generate a declining function with constraints on the x and y intercepts so that the integral of the curve is constant?

The integral of a given function between given integration limits will always be a constant. The integral of a given function between variable limits - for example, from 0 to x - can only be a constant if the function is equal to zero everywhere.