The definite integral of any function identically equal to zero between any two points is zero.
Integral is the area under the graph of the given function. Sometimes the terms "integral" or "indefinite integral" are used to refer to the general antiderivative of a function, especially in many textbooks. In this case, the indefinite integral is equal to an arbitrary constant, and it is important to distinguish between these two cases.
Chat with our AI personalities
The Integral diverges. It has singularities whenever sin(x)+cos(x)=0. Singularities do not necessarily imply that the integral goes to infinity, but that is the case here, since the indefinite integral is x/2 + 1/2 Log[-Cos[x] - Sin[x]]. Obviously this diverges when evaluated at zero and 2pi.
integral (a^x) dx = (a^x) / ln(a)
In order to evaluate a definite integral first find the indefinite integral. Then subtract the integral evaluated at the bottom number (usually the left endpoint) from the integral evaluated at the top number (usually the right endpoint). For example, if I wanted the integral of x from 1 to 2 (written with 1 on the bottom and 2 on the top) I would first evaluate the integral: the integral of x is (x^2)/2 Then I would subtract the integral evaluated at 1 from the integral evaluated at 2: (2^2)/2-(1^2)/2 = 2-1/2 =3/2.
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
The antiderivative, or indefinite integral, of ex, is ex + C.