answersLogoWhite

0


Best Answer

sec x = 1/cos x so sec x * cos x = 1

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find sec x cos x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is sec x cos x?

sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1


Is cos 2 x sec x equals 2 cos x - sec x an identity?

Yes, it is. the basic identity is for a double angle relation: cos 2x = 2 cosx cos x -1 since sec x =1/cos x if we multiply both sides by sec x we get cos2xsec x = 2cosxcos x/cos x -1/cos x = 2cos x - sec x


How do you put sec cubed in a calculator?

sec x = 1/cos x → sec³ x = 1/cos³ x or sec³ x = (cos x)^-3 Therefore to enter sec³ x on a calculator: Newer, "natural" calculators: mathio: sec³ x → [x-power] [cos] [<angle>] [)] [navigate →] [(-)] [3] [=] lineio: sec³ x → [(] [cos] [)] [)] [x-power] [(-)] [3] [)] [=] Older, function acts on displayed number calculators: sec³ x → [angle] [cos] [x-power] [3] [±] [=]


How do you simplify sec x cot x?

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)


How do you prove tan x plus tan x sec 2x equals tan 2x?

tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x


What is the reciprocal of a cosine?

1/cos(x)=sec(x). sec is short for secant.


How do you solve the following identity sec x - cos x equals sin x tan x?

sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.


1 over cos x equals what?

sec(x)=1/cos(x), by definition of secant.


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


What is the simplest form for tanx divided by secx?

Need the fundamental identities here. tan(X) = sin(X)/cos(X) sec(X) = 1/cos(X) so tan(X)/sec(X) same as, sin(X)/cos(X) * cos(X)/1 cancel the cos(X) = sin(X) ---------------simplest form


What is Cos 2 x divided by cos x?

cos 2x = cos2 x - sin2 x = 2 cos2 x - 1; whence, cos 2x / cos x = 2 cos x - (1 / cos x) = 2 cos x - sec x.


What is the integral of sec squared x?

tan(x) + C d/dx tan(x) = d/dx (sin(x))/(cos(x)) = (sin^2(x)+cos^2(x))/(cos^2(x)) = 1/(cos^2(x)) = sec^2(x) NEVER FORGET THE CONSTANT!