cosine (90- theta) = sine (theta)
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
It's 1/2 of sin(2 theta) .
cos2(theta) = 1 cos2(theta) + sin2(theta) = 1 so sin2(theta) = 0 cos(2*theta) = cos2(theta) - sin2(theta) = 1 - 0 = 1
x = r*cos(theta) y = r*sin(theta) for alpha < theta < alpha + 90 degrees where r is the radius and alpha is any angle (which determines the direction in which the quarter circle is facing).
Zero. Anything minus itself is zero.
The expression (\cos^2(90^\circ - \theta)) can be simplified using the co-function identity, which states that (\cos(90^\circ - \theta) = \sin(\theta)). Therefore, (\cos^2(90^\circ - \theta) = \sin^2(\theta)). This means that (\cos^2(90^\circ - \theta)) is equal to the square of the sine of (\theta).
Tan^2
Cos(360 - X) = Trig. Identity Cos(360)Cos(x) + Sin(360)Sin(x) => 1CosX + 0Sinx => CosX + o => CosX
cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)
Cos theta squared
The solution is found by applying the definition of complementary trig functions: Cos (&Theta) = sin (90°-&Theta) cos (62°) = sin (90°-62°) Therefore the solution is sin 28°.
cos2(theta) = 1 so cos(theta) = ±1 cos(theta) = -1 => theta = pi cos(theta) = 1 => theta = 0
Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).
-Sin^(2)(Theta) + Cos^(2)Theta => Cos^(2)Theta - Sin^(2)Theta Factor (Cos(Theta) - Sin(Theta))( Cos(Theta) + Sin(Theta)) #Is the Pythagorean factors . Or -Sin^(2)Theta = -(1 - Cos^(2)Theta) = Cos(2)Theta - 1 Substitute Cos^(2)Thetqa - 1 + Cos^(2) Theta = 2Cos^(2)Theta - 1
(Sin theta + cos theta)^n= sin n theta + cos n theta
The identity for tan(theta) is sin(theta)/cos(theta).