answersLogoWhite

0


Best Answer
Cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x).

Source: ChaCha.com

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What does cos2x equal?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

How do you solve sin squared theta plus cos theta equals sin theta plus cos squared theta?

For simplicity's sake, X represent theta. This is the original problem: sin2x+ cosX = cos2X + sinX This handy-dandy property is key for all you trig fanatics: sin2x+ cos2x = 1 With this basic property, you can figure out that sin2 x=1-cos2x and cos2x= 1-sin2x So we can change the original problem to: 1-cos2x+cosx = 1-sin2X + sinX -cos2x + cosx =-sin2x + sinX Basic logic tells you that one of two things are happening. sin2x is equal to sinx AND cos2x is equal to cosx. The only two numbers that are the same squared as they are to the first power are 1 and 0. X could equal 0, which has a cosine of 1 and a sine of 0, or it could equal pi/2, which has a cosine of 0 and a sine of 1. The other possibility whatever x (or theta) is, it's sine is equal to its cosine. This happens twice on the unit circle, once at pi/4 and once at 5pi/4. If you're solving for all possible values for x and not just a set range on the unit circle, then the final solution is: x=0+2pin x=pi/2+2pin x= pi/4 +2pin x=5pi/4+2pin (note that n is a variable)


Derivative of 1 plus cos2x?

First find the derivative of each term. The derivative of any constant is zero, so d(1)/dx=0. To find the derivative of cos2x, use the chain rule. d(cos2x)/dx=-sin(2x)(2)=-2sin(2x) So the answer is 0-2sinx, or simply -2sinx


How does 1 plus cot squared x equals csc squared x?

The proof of this trig identity relies on the pythagorean trig identity, the most famous trig identity of all time: sin2x + cos2x = 1, or 1 - cos2x = sin2x. 1 + cot2x = csc2x 1 = csc2x - cot2x 1 = 1/sin2x - cos2x/sin2x 1 = (1 - cos2x)/sin2x ...using the pythagorean trig identity... 1 = sin2x/sin2x 1 = 1 So this is less of a proof and more of a verification.


What is the integral from 0 to pi over 6 sine 2x dx?

Integral from 0 to pi 6sin2xdx: integral of 6sin2xdx (-3)cos2x+c. (-3)cos(2 x pi) - (-3)cos(2 x 0) -3 - -3 0


How do you find the solutions of tanx equals 2cscx?

tanx=2cscx sinx/cosx=2/sinx sin2x/cosx=2 sin2x=2cosx 1-cos2x=2cosx 0=cos2x+2cosx-1 Quadratic formula: cosx=(-2±√(2^2+4))/2 cosx=(-2±√8)/2 cosx=(-2±2√2)/2 cosx=-1±√2 cosx=approximately -2.41 or approximately 0.41. Since the range of the cosine function is [-1,1], only approx. 0.41 works. So: cosx= approx. 0.41 Need calculator now (I went as far as I could without one!) x=approx 1.148

Related questions

What is cos2x equal to?

You can look up "trigonometric identities" in Wikipedia.Cos(2x), among other things, is equal to (cos x)^2 - (sin x)^2 If you meant cos squared x, or (cos x)^2, that is equal to (1 + cos(2x))/2


Does cos2x equal 2cosxsinx?

No; sin2x = 2 cosx sinx


What is cos squared x equal?

1 - sin2x(1+ cos2x)/2


How do you verify cos2 theta divided by csc2 theta plus cos4 theta equals cos2 theta?

Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x


How do you prove one - tan square x divided by one plus tan square xequal to cos two x?

(1 - tan2x)/(1 + tan2x) = (1 - sin2x/cos2x)/(1 + sin2x/cos2x) = (cos2x - sin2x)/(cos2x + sin2x) = (cos2x - sin2x)/1 = (cos2x - sin2x) = cos(2x)


Can you prove that cossquaredx - sinsquaredx equals 2cossquaredx -1?

3


How does sin2x divided by 1-cosx equal 1 plus cosx?

sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)


How do you factor sinx-cos2x-1?

[sinx - cos2x - 1] is already factored the most it can be


Integral of sin squared x?

First we look at the double-angle identity of cos2x. We know that: cos2x = cos^2x - sin^2x cos2x = [1-sin^2x] - sin^2x.............. (From sin^2x + cos^2x = 1, cos^2x = 1 - sin^2x) Therefore: cos2x = 1 - 2sin^2x 2sin^2x = 1 - cos2x sin^2x = 1/2(1-cos2x) sin^2x = 1/2 - cos2x/2 And intergrating, we get: x/2 - sin2x/4 + c...................(Integral of cos2x = 1/2sin2x; and c is a constant)


Integration of cos2x?

Using chain rule:integral of cos2x dx= 1/2 * sin2x + C


How do you solve 2 cos squared x - sinx - 1?

1


How do you solve sin squared theta plus cos theta equals sin theta plus cos squared theta?

For simplicity's sake, X represent theta. This is the original problem: sin2x+ cosX = cos2X + sinX This handy-dandy property is key for all you trig fanatics: sin2x+ cos2x = 1 With this basic property, you can figure out that sin2 x=1-cos2x and cos2x= 1-sin2x So we can change the original problem to: 1-cos2x+cosx = 1-sin2X + sinX -cos2x + cosx =-sin2x + sinX Basic logic tells you that one of two things are happening. sin2x is equal to sinx AND cos2x is equal to cosx. The only two numbers that are the same squared as they are to the first power are 1 and 0. X could equal 0, which has a cosine of 1 and a sine of 0, or it could equal pi/2, which has a cosine of 0 and a sine of 1. The other possibility whatever x (or theta) is, it's sine is equal to its cosine. This happens twice on the unit circle, once at pi/4 and once at 5pi/4. If you're solving for all possible values for x and not just a set range on the unit circle, then the final solution is: x=0+2pin x=pi/2+2pin x= pi/4 +2pin x=5pi/4+2pin (note that n is a variable)