Study guides

☆☆

Q: Derivative of 1 plus cos2x

Write your answer...

Submit

Still have questions?

Related questions

(-x+tanx)'=-1+(1/cos2x)

It is sec2x, this is the same as 1/cos2x.

(1 - tan2x)/(1 + tan2x) = (1 - sin2x/cos2x)/(1 + sin2x/cos2x) = (cos2x - sin2x)/(cos2x + sin2x) = (cos2x - sin2x)/1 = (cos2x - sin2x) = cos(2x)

Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x

sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)

[sinx - cos2x - 1] is already factored the most it can be

Sin2x + Cos2x=1, so Cos2x=1-Sin2x and Sin2x=1-Cos2x. Also Sin/Cos = Tan. Sec2x=1+Tan2x. Cot2x+1=Csc2x.

First we look at the double-angle identity of cos2x. We know that: cos2x = cos^2x - sin^2x cos2x = [1-sin^2x] - sin^2x.............. (From sin^2x + cos^2x = 1, cos^2x = 1 - sin^2x) Therefore: cos2x = 1 - 2sin^2x 2sin^2x = 1 - cos2x sin^2x = 1/2(1-cos2x) sin^2x = 1/2 - cos2x/2 And intergrating, we get: x/2 - sin2x/4 + c...................(Integral of cos2x = 1/2sin2x; and c is a constant)

1

The proof of this trig identity relies on the pythagorean trig identity, the most famous trig identity of all time: sin2x + cos2x = 1, or 1 - cos2x = sin2x. 1 + cot2x = csc2x 1 = csc2x - cot2x 1 = 1/sin2x - cos2x/sin2x 1 = (1 - cos2x)/sin2x ...using the pythagorean trig identity... 1 = sin2x/sin2x 1 = 1 So this is less of a proof and more of a verification.

d/dx of lnx is 1/x Therefore the derivative is 1/(1+x)

it is not possible to get the Integral of cos2x log cosx-sinx coax plus since there are no symbols given in the equation.

People also asked