answersLogoWhite

0


Best Answer

32.311

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the diagonal measurement of a 12 x 30 rectangle?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the diagonal measurement of a 30 'x 16' rectangle?

That would be 34 feet.


What is the diagonal measurement of a rectangle 30 by 20 feet?

Since the rectangle has right angles, you can use Pythagoras' Theorem in this case.


What is the diagonal measurement of 40 and 30?

Assuming that the 40 and 30 refer to sides of a rectangle and not to any of the infinite number of other possible shapes, the answer is 50.


How long is the diagonal of a rectangle with the length of 30 yd and the width of 30 yd?

The diagonal of a rectangle with the length of 30 yd and the width of 30 yd is approximately 42.43 yd


What is the diagonal measurement of a rectangle measuring 50 feet by 30 feet?

Use Pythagoras' theorem:- 502+302 = 3400 and the square root of this is the length of the diagonal which is about 58.309 feet to 3 dp


What is the length of a diagonal line in a rectangle 24 feet by 30 feet?

The diagonal is approximately 38.42 feet.


How long is the diagonal of a 24 ft by 30 ft rectangle?

38.42 feet.


A square has a diagonal which is 30 inches how long in inches is its side?

A square with a 30-inch diagonal measurement has sides of 21.21 inches in length.


How long is the diagonal of a rectangle 30 feet by 34 feet?

The diagonal will be the hypotenuse of a right triangle with legs 30 and 34 feet So its length is the square root of (34^2+ 30^2 )


How long is diagonal of 30' x48'rectangle?

302+482=3204 squareroot(3204) Answer=56.60388679


What is the length of a diagonal line in a rectangle 30 feet by 20 feet?

You can calculate this using the Pythagorean formula for a right triangle.


How long is the diagonal of a 30 ft x 50 ft rectangle?

To find the length of the diagonal of a rectangle, we can use the Pythagorean theorem, which states that the square of the length of the diagonal is equal to the sum of the squares of the lengths of the two sides. In this case, the diagonal length (d) can be calculated as follows: d^2 = 30^2 + 50^2. Therefore, d^2 = 900 + 2500 = 3400. Taking the square root of 3400 gives us the diagonal length, which is approximately 58.3 feet.