Vertex form is denoted by: y=a(x-h)2+k Where (h,k) is the vertex. So, we have: y=a(x-2)2+3 (This super\subscript thing is annoying). Plug in the values for x and y for the point in the equation and you have your answer.
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
Assume the expression is: y = x² - 10x + 30 Complete the squares to get: y = x² - 10x + 25 + 30 - 25 = (x - 5)² + 5 So the expression is in vertex form y = (x - h)² + k
The vertex form is y = (x - 4)2 + 13
http://www.algebra.com/algebra/homework/Polynomials-and-rational-expressions/completing-the-square.solvergo to this address for step by step instructions on this and the answer. just plug in you a, b, and c value and your off!
The vertex form for a quadratic equation is y=a(x-h)^2+k.
The given equation is y = x - 4x + 2 which can be written as y = -3x + 2 This is an equation of a straight line. Therefore it has no vertex and so cannot be written in vertex form.
when the function is in vertex form: y = a(x - h)2 + k, the point (h, k) is the vertex.
y=a(x-h)2+k
By inspection you should be able to see that this is a parabola with a vertex of this. (0, 0) There is no form for this function as there is no linear term.
Vertex form is denoted by: y=a(x-h)2+k Where (h,k) is the vertex. So, we have: y=a(x-2)2+3 (This super\subscript thing is annoying). Plug in the values for x and y for the point in the equation and you have your answer.
The vertex of the positive parabola turns at point (-2, -11)
y= -5/49(x-9)^2+5
Y=3x^2 and this is in standard form. The vertex form of a prabola is y= a(x-h)2+k The vertex is at (0,0) so we have y=a(x)^2 it goes throug (2,12) so 12=a(2^2)=4a and a=3. Now the parabola is y=3x^2. Check this: It has vertex at (0,0) and the point (2,12) is on the parabola since 12=3x2^2
y=2(x-3)+1
It is (y - b)^2 = ax + c
Assume the expression is: y = x² - 10x + 30 Complete the squares to get: y = x² - 10x + 25 + 30 - 25 = (x - 5)² + 5 So the expression is in vertex form y = (x - h)² + k