answersLogoWhite

0

hahaha wula ata

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
More answers

AC circuit analysis, for one.

User Avatar

Wiki User

14y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Applications of laplace transform
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Applications of laplace transform in engineering?

Laplace transforms to reduce a differential equation to an algebra problem. Engineers often must solve difficult differential equations and this is one nice way of doing it.


Does every continious function has laplace transform?

There are continuous functions, for example f(t) = e^{t^2}, for which the integral defining the Laplace transform does not converge for any value of the Laplace variable s. So you could say that this continuous function does not have a Laplace transform.


How Laplace Transform is used solve transient functions in circuit analysis?

f(t)dt and when f(t)=1=1/s or f(t)=k=k/s. finaly can be solve:Laplace transform t domain and s domain L.


Using laplace transform find function y given 2nd derivative of y plus y equals 0 with both initial conditions equal to 0?

Solve y''+y=0 using Laplace. Umm y=0, 0''+0=0, 0.o Oh well here it is. First you take the Laplace of each term, so . . . L(y'')+L(y)=L(0) Using your Laplace table you know the Laplace of all these terms s2L(y)-sy(0)-y'(0) + L(y) = 0 Since both initial conditions are 0 this simplifies to. . . s2L(y) + L(y) = 0 You can factor out the L(y) and solve for it. L(y) = 0/(s2+1) L(y) = 0 Now take the inverse Laplace of both sides and solve for y. L-1(L(y)) = L-1(0) y = 0


Y' equals x plus y Explicit solution?

using Laplace transform, we have: sY(s) = Y(s) + 1/(s2) ---> (s-1)Y(s) = 1/(s2), and Y(s) = 1/[(s2)(s-1)]From the Laplace table, this is ex - x -1, which satisfies the original differential eq.derivative of [ex - x -1] = ex -1; so, ex - 1 = ex - x - 1 + xto account for initial conditions, we need to multiply the ex term by a constant CSo y = C*ex - x - 1, and y' = C*ex - 1, with the constant C, to be determined from the initial conditions.