answersLogoWhite

0

the only close answer i know is:

eix = cos(x)+i*sin(x)

where i is imaginary unit

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: Can e be expressed in terms of sine and cosine?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

What is the anti-derivative of e-x2?

I believe the questioner means e^(-x^2), which is perhaps the most famous of many functions which do not have anti-derivatives which can be expressed by elementary functions. The definite integral from minus infinity to plus infinity, however, is known: It is sqrt(pi). The antiderivative to e^(-2x) is, (-*e^(-2x)/2) Though the anti-derivative (integral) of many functions cannot be expressed in elementary forms, a variety of functions exist only as solutions to certain "unsolvable" integrals. the equation erf(x), also known as the error function, equals (2/sqrt(pi))*integral e(-t^2) dt from 0 to x. As mentioned before, this cannot be expressed through basic mathematical functions, but it can be expressed as an infinite series. If the question is the antiderivative of e - x2, the answer is e*x - x3/3


How can I solve a quadratic equations for x in terms of y?

A quadratic involving x and y is usually in the form 'y = ax2 + bx + c'. This form is y in terms of x, so we must rearrange it. y = ax2 + bx + c y/a = x2 + bx/a + c/a y/a = x2 + bx/a + d + e, where c/a = d + e, e = (b/a)2 y/a - e = x2 + bx/a + d y/a -e = (x + b/a)2 √(y/a - e) = x + b/a √(y/a - e) - b/a = x


Difference between power series and fourier power series?

A power series is a series of the form ( \sum_{n=0}^{\infty} a_n (x - c)^n ), representing a function as a sum of powers of ( (x - c) ) around a point ( c ). In contrast, a Fourier power series represents a periodic function as a sum of sine and cosine functions, typically in the form ( \sum_{n=-\infty}^{\infty} c_n e^{i n \omega_0 t} ), where ( c_n ) are Fourier coefficients and ( \omega_0 ) is the fundamental frequency. While power series are generally used for functions defined on intervals, Fourier series specifically handle periodic functions over a defined period.


What is the antiderivative of the square root of cos x?

Sadly, this falls into the realm of many functions that do not possess an algebraic anti-derivative. This doesn't mean that its value doesn't exist, only that it cannot be expressed in terms of things such as trig functions, polynomials, or any other standard function. One way you can try to express this value if needed could be through the use of a Taylor polynomial which for the first few terms comes out to be a x-x^3/12-x^5/480-(19 x^7)/40320-(559 x^9)/5806080-(2651 x^11)/116121600.... While it may not help to directly calculate, you can express the value of anti-derivatives like this using something called an Elliptic Integral. This specific anti-derivative can be represented as 2E(x/2 | 2) where E is called the elliptic integral of the second kind which can be expressed as E(p | k) = Integral from 0 to p of √(1-k²sin²(t))dt


Why natural log has base e?

Because when the system of logarithms with the base 'e' was defined and tabulated, it was entitled with the identifying label of "Natural Logarithms". ---------------------------------- My improvement: The natural log base is e (a numerical constant of about 2.718). It is chosen as a log base since there is a mathematical series (a "string" of mathematical numerical terms to be summed) for calculating a logarithm (ie. exponent of the base) of a number, which has a base of e. Series for calculating logarithms with bases other than e have basically not been developed.