answersLogoWhite

0

sin is short for sine, cos for cosine, tan for tangent. These functions are defined in several ways; one way is with a unit circle - a circle with radius 1, in which angles are measured starting on the right, and then counterclockwise. In this case, the sine is the y-coordinate on the circle - as a function of the angle. For example, for an angle of 0°, the y-coordinate is 0; for an angle of 90°, the y-coordinate is 1. Therefore, the sine of 0° is said to be zero, and the sine of 90° is said to be one. Similarly, the cosine is the x-coordinate. The tangent of x is the ratio of sine x / cosine x. - Note that in advanced math, angles are often measured in radians instead of the (rather arbitrary) degrees.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: What is e meaning sin tan and cos?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the integral of sin x Times Square x times exp x?

Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant


Which ratio is used in finding the sine of an angle in a right triangle?

**Sin**e(angle) = opposite / hupotenuse NB **Cos**ine(angle) = adjacent / hypotenuse **Tan**gent(angle) = opposite/adjacent.


How do I write an equation for a sequence that isn't linear or exponential?

A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)


By taking two examples show that sum of two irrational numbers may not be an irrational number?

The most basic example you can have entails adding the positive and negative of the irrational to get zero: e + -e = 0 Another example you can give is to use compound angle formulae with trig: sin(15 deg)cos(75 deg) + sin(75 deg)cos(15 deg) = sin(90 deg) = 1


What is ten raised to the with power?

Using Euler's relation, we know that e^(i*n*pi) = cos(n*pi) + i*sin(n*pi) where n is an integer. We also know that we can rewrite 10 as e raised to a specific power, namely e^(ln(10)). So substituting this back into 10^i and then applying Euler's relation, we obtain 10^i = (e^(ln(10)))^i = (e^(i*ln(10))) = cos(ln(10)) + i*sin(ln(10)).