answersLogoWhite

0


Best Answer

sin is short for sine, cos for cosine, tan for tangent. These functions are defined in several ways; one way is with a unit circle - a circle with radius 1, in which angles are measured starting on the right, and then counterclockwise. In this case, the sine is the y-coordinate on the circle - as a function of the angle. For example, for an angle of 0°, the y-coordinate is 0; for an angle of 90°, the y-coordinate is 1. Therefore, the sine of 0° is said to be zero, and the sine of 90° is said to be one. Similarly, the cosine is the x-coordinate. The tangent of x is the ratio of sine x / cosine x. - Note that in advanced math, angles are often measured in radians instead of the (rather arbitrary) degrees.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is e meaning sin tan and cos?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the integral of sin x Times Square x times exp x?

Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant


How do I write an equation for a sequence that isn't linear or exponential?

A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)


By taking two examples show that sum of two irrational numbers may not be an irrational number?

The most basic example you can have entails adding the positive and negative of the irrational to get zero: e + -e = 0 Another example you can give is to use compound angle formulae with trig: sin(15 deg)cos(75 deg) + sin(75 deg)cos(15 deg) = sin(90 deg) = 1


What is ten raised to the with power?

Using Euler's relation, we know that e^(i*n*pi) = cos(n*pi) + i*sin(n*pi) where n is an integer. We also know that we can rewrite 10 as e raised to a specific power, namely e^(ln(10)). So substituting this back into 10^i and then applying Euler's relation, we obtain 10^i = (e^(ln(10)))^i = (e^(i*ln(10))) = cos(ln(10)) + i*sin(ln(10)).


What is the smallest number such that tan e to power x equals 1?

When x = 3.806663, tan(e^x) = 1.

Related questions

What is the integral of sin x Times Square x times exp x?

Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant


What is the integral of sin x times The exponential of x Times Square x?

Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant


What is Euler's law?

e^(i*x) = cos(x) + i*sin(x) This is used alot in engineering. But it also has functional uses as: cos(x)= Re( e^(i*x)) = (e^(i*x) + e^(-i*x)) / 2 sin(x)= Im( e^(i*x)) = (e^(i*x) - e^(-i*x)) / 2


What is Euler's calculus formula?

e^(i*x)=cos(x)+i*sin(x) pretty sweet formula


What is Cos squared x - 1 equal to?

Cos2(x-1) is equal to: 1/2 * (1 + Cos(2 - 2x)) (Cos(x) * Cos(1) - Sin(x) * Sin(1))2 1/4 * (2 + e2i - 2ix + e2ix - 2i) where e is the natural log and i is the imaginary unit.


What is angle E to the nearest degree in the triangle EFG where FG is 89 inches EG is 77 inches and angle G is 132 degrees?

This can be solved using the cosine rule to find the length of side EF, and the sine rule to find angle E The cosine rule is: a² = b² + c² - 2bc cos A we have: A = G = 132° a = EF b = EG = 77 inches c = FG = 89 inches (the assignment of b and c doesn't matter as they are the two sides of the angle A and are interchangeable for the cosine rule), giving: EF² = 77² + 89² - 2×77×89×cos 132° → EF = √(77² + 89² - 2×77×89×cos 132°) The sine rule is: (sin A)/a = (sin B)/b = (sin C)/C we have: A = G = 132° a = EF = √(77² + 89² - 2×77×89×cos 132°) inches (found above) C = E c = FG = 89 inches → (sin 132°)/√(77² + 89² - 2×77×89×cos 132°) in = (sin E)/89 in → sin E = (89 sin 132°)/√(77² + 89² - 2×77×89×cos 132°) → E = arc sin((89 sin 132°)/√(77² + 89² - 2×77×89×cos 132°)) → E ≈ 25.8° → E ≈ 26° to the nearest degree


How do you find out the population of a country?

To calculate the population size in a sample: -- Count the number of people (or items) in the sample. -- Multiply by [ sin(?/2) cos(2?) tan (?/4) ]2 x [ ln(e)/log(10) ]3 Hz-sec/cycle


How do you derive sin2x?

If you are refering to the double-angle formula for sin(x), the best way is to use what is known as Euler's identity. Euler's identity is eix = cos(x) + i*sin(x) where x is any real angle in radians, e is Euler's constant 2.71828182845... and i is the imaginary number: SQRT(-1). Assuming that is true, then ei(2x) = cos(2x) + i*sin(2x) and that is the same as saying (eix)2= cos(2x) + i*sin(2x) and substituting from the original equation: (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x). By distribution, remembering that i2 = -1, we get cos2(x) + i*2*sin(x)*cos(x) - sin2(x) = cos(2x) + i*sin(2x). Now we can separate the equation into its real and imaginary parts. cos2(x) - sin2(x) = cos(2x) and i*2*sin(x)*cos(x) = i*sin(2x), and after i cancels, there's our good old double angle formula. If derive refers to derivative, then use the chain rule. d(sin(2x))/dx=2cos(2x)


Can e be expressed in terms of sine and cosine?

the only close answer i know is: eix = cos(x)+i*sin(x) where i is imaginary unit


How can you make rational of i power i?

It is NOT rational, but it IS real.Start with Euler's formula: e^ix = cos(x) + i*sin(x) for all x.When x = pi/2,e^(i*pi/2) = cos(pi/2) + i*sin(pi/2) = 0 + i*1 = ior i = e^(i*pi/2)Raising both sides to the power i givesi^i = e^[i*(i*pi/2)] = e^[i*i*pi/2]and since i*i = -1,i^i = e^(-pi/2) = 0.20788, approx.


How do I write an equation for a sequence that isn't linear or exponential?

A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)


What is Leonard Euler's famous formula?

eix = cos(x) + i*sin(x) where e is the irrational number 2.7182... i is the maginary sq root of -1 and x is measured in radians. In the special case when x = pi, this reduces to: eiπ = cos(π) + i*sin(π) or eiπ = -1