Find I = ∫ tan³ x dx. The solution is: I = ½ tan² x - log cos x. * * * Here is how we can obtain this result: First, let t = tan x, s = sin x, and c = cos x; then, dI = t³ dx, ds = c dx, dc = -s dx, and dt = (1 + t²) dx; and, of course, t = s / c. By algebra, t³ = t(t² + 1) - t; thus, we have dI = t³ dx = t(t² + 1) dx - t dx = t dt - t dx. Now, d (t²) = 2t dt; thus, t dt = ½ d(t²). On the other hand, we have d log c = dc / c = -s dx / c = -t dx; thus, t dx = -d log c. Combining these results, we have dI = t dt - t dx = ½ d(t²) - d log c. This integrates readily, giving I = ½ t² - log c, which is the solution we sought. * * * We may check our result, by differentiating back: dt / dx = 1 + t²; and d(t²) / dt = 2t; thus, (d/dx)(t²) = 2t dt / dx = 2t (1 + t²). Also, we have d log c / dc = 1 / c; and dc / dx = -s; whence, (d/dx)(log c) = (dc / dx) / c = -s / c = -t. Then, dI / dx = ½ (d/dx)(t²) - (d/dx)(log c) = t (1 + t²) - t = t + t³ - t = t³, re-assuring us that we have integrated correctly.
Chat with our AI personalities
Cotangent 32 equals tangent 0.031
Calculate the derivative of the function.Use the derivative to calculate the slope at the specified point.Calculate the y-coordinate for the point.Use the formula for a line that has a specified slope and passes through a specified point.
The integral of f'(x) = 1 is f(x) = x + c
The indefinite integral of x dt is xt
the derivative of 3x is 3 the derivative of x cubed is 3 times x squared