Using chain rule:integral of cos2x dx= 1/2 * sin2x + C
Integral( sin(2x)dx) = -(cos(2x)/2) + C
∫ 1/cos(x) dx = ln(sec(x) + tan(x)) + C C is the constant of integration.
∫ d/dx f(x) dx = f(x) + C C is the constant of integration.
x5lnx?d/dx (uv)=u*dv/dx+v*du/dxd/dx (x5lnx)=x5*[d/dx(lnx)]+lnx*[d/dx(x5)]-The derivative of lnx is:d/dx(lnu)=(1/u)*[d/dx(u)]d/dx(lnx)=(1/x)*[d/dx(x)]d/dx(lnx)=(1/x)*[1]d/dx(lnx)=(1/x)-The derivative of x5 is:d/dx (xn)=nxn-1d/dx (x5)=5x5-1d/dx (x5)=5x4d/dx (x5lnx)=x5*[1/x]+lnx*[5x4]d/dx (x5lnx)=[x5/x]+5x4lnxd/dx (x5lnx)=x4+5x4lnx
(1/4)x^2(2logx-1) + c
Using chain rule:integral of cos2x dx= 1/2 * sin2x + C
There are a lot of rules for integration! Plus a lot of techniques! Here is the power rule as a simple example. int[Xn dx] = (Xn + 1)/(n + 1) + C ( n does not equal - 1 )
∫ (1/x) dx = ln(x) + C C is the constant of integration.
∫ xn dx = xn+1/(n+1) + C (n ≠-1) C is the constant of integration.
integral x/(x-1) .dx = x - ln(x-1) + c where ln = natural logarithm and c = constant of integration alternatively if you meant: integral x/x - 1 .dx = c
This is a trigonometric integration using trig identities. S tanX^3 secX dX S tanX^2 secX tanX dX S (secX^2 -1) secX tanX dX u = secX du = secX tanX S ( u^2 - 1) du 1/3secX^3 - secX + C
∫ 1/sinh2(x) dx = -cotanh + C C is the constant of integration.
∫ 1/cos2(x) dx = tan(x) + C C is the constant of integration.
Bring 2 out in front of integration sign. 2 int 1/X^2 dx 2 int X^-2 dx = -2/x + C
2
Integral( sin(2x)dx) = -(cos(2x)/2) + C