x/mo x
Chat with our AI personalities
Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.
The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
The derivative of 3cos(x) is -3sin(x). This can be found using the chain rule, which states that the derivative of a composition of functions is the derivative of the outer function evaluated at the inner function, multiplied by the derivative of the inner function. In this case, the derivative of cos(x) is -sin(x), and when multiplied by the constant 3, we get -3sin(x) as the derivative of 3cos(x).
The derivative of csc(x) is -cot(x)csc(x).
derivative of sec2(x)=2tan(x)sec2(x)