14
3 times the square root of 3
For a regular hexagon, half the side length can be calculated from the apothem via trigonometry: half_side_length = apothem x tan 30° Then: area = apothem x 1/2 x perimeter = apothem x 1/2 x side_length x 6 = apothem x half_side_length x 6 = 24 in x (24 in x tan 30°) x 6 ≈ 1995 sq in
297 M
Such a hexagon is impossible. A regular hexagon with sides of 2 cm can have an apothem of sqrt(3) cm = approx 1.73.It seems you got your question garbled. A regular hexagon, with sides of 2 cm, has an area of 10.4 sq cm. If you used your measurement units properly, you would have noticed that the 10.4 was associated with square units and it had to refer to an area, not a length.
14
The perimeter of a hexagon with an apothem of 12 is 83.14
3 times the square root of 3
10.4 cm
For a regular hexagon, half the side length can be calculated from the apothem via trigonometry: half_side_length = apothem x tan 30° Then: area = apothem x 1/2 x perimeter = apothem x 1/2 x side_length x 6 = apothem x half_side_length x 6 = 24 in x (24 in x tan 30°) x 6 ≈ 1995 sq in
12 x 5 x 20 ie 1200squnits. I'm not convinced you can have such a hexagon, if the side is 10 then shouldn't the apothem have to be 5 root 3?
Easy. Since the side is the base and the apothem is the height of the triangle, multiply them and divide by two to get the area of the triangle. 3 * 3.46 = 10.38 /2 = 5.19. Then multiply by 6 to get the area of the hexagon. 5.19 * 6 = 31.14. You multiply by 6 because you can fit 6 regular triangles in a regular hexagon. We've already found the area of one regular triangle in the hexagon.
297 M
It is 679 square metres.
3.55
Assuming that you are talking about a regular hexagon, the equation is (1/2)ap, a being the apothem and pbeing the perimeter. You can also use that equation for any other regular polygon.
Such a hexagon is impossible. A regular hexagon with sides of 2 cm can have an apothem of sqrt(3) cm = approx 1.73.It seems you got your question garbled. A regular hexagon, with sides of 2 cm, has an area of 10.4 sq cm. If you used your measurement units properly, you would have noticed that the 10.4 was associated with square units and it had to refer to an area, not a length.