answersLogoWhite

0

The question cannot be answered.

A regular hexagon with sides of 10 inches would have apothems of 10/sqrt(2) = 7.071 inches. Therefore the hexagon cannot be regular.

And, since the hexagon is irregular, there is not enough information to answer the question.

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

Area of the regular hexagon whose side length is 16 in and apothem is 8 square root 3 in?

It is 665.1 sq inches.


What is the area of a regular hexagon with a perimeter of 36 inches and an apothem of 5.2 inches?

Given the perimeter of a regular hexagon, it is better to use the side length: 6 inches, rather than the apothem of 5.2 inches because the latter is he rounded value of 3*sqrt(3) which is 5.196152... rather than 5.2. Based on the length of the sides, the area is approx 93.53 sq inches. [The apothem would have given 93.67 sq inches.]


What is the area of a regular hexagon whose side lenght is 16 inches and the apothem is 8 square root of 3?

665.1 square units.


What is the area of a regular octagon with a side length of 4 inches and an apothem length of 4.8 inches?

By joining all the vertices to the centre of the octagon, the apothem forms the height of the triangles with the side of the regular octagon as the base. This the area is 8 × area_triangles = 8 × ½ × side × apothem = 4 × side × apothem: Area_regular_octagon = 4 × side_length × apothem ≈ 4 × 4 in × 4.8 in = 76.8 in²


What is the apothem of a regular hexagon?

If the hexagon has side length s, then the apothem is sqrt(3) * s / 2.


What is the area of a regular hexagon with apothem length of 24 inches?

For a regular hexagon, half the side length can be calculated from the apothem via trigonometry: half_side_length = apothem x tan 30° Then: area = apothem x 1/2 x perimeter = apothem x 1/2 x side_length x 6 = apothem x half_side_length x 6 = 24 in x (24 in x tan 30°) x 6 ≈ 1995 sq in


How do you find the area of a regular hexagon whose apothem is 1.7cm and side length is 2cm?

To find the area of a regular hexagon, you can use the formula: Area = (Perimeter × Apothem) / 2. The perimeter of the hexagon is 6 times the side length, so for a side length of 2 cm, the perimeter is 12 cm. Substituting the values into the formula gives: Area = (12 cm × 1.7 cm) / 2 = 10.2 cm². Thus, the area of the hexagon is 10.2 cm².


What is the Area of a regular hexagon with a base of 10 and an apothem of 20?

12 x 5 x 20 ie 1200squnits. I'm not convinced you can have such a hexagon, if the side is 10 then shouldn't the apothem have to be 5 root 3?


Find the area of the regular hexagon described in the question above?

Let s be the length of a side of the hexagon and let h be the the apothem 6(1/2sh) it the area of 3sh.


What is the side length of a regular hexagon with area 100 square centimeters?

5.7735026918962... The formula for the area of a hexagon is A=.5ap, or A=(1/2)ap, where A=area, a=apothem, and p=perimeter. This means that, because the area is 100, 100=.5ap, so 200=ap. Because in a regular hexagon the apothem is equal to the side length, what we are really saying here is that 200=6a2. Therefore, 33.333=a2, or a= about 5.77. This is the side length.


What is the perimeter of a hexagon having 225 cm square area of a circle inscribed in it?

Area of circle = 225 cm2 implies radius = 8.46 cm (approx) Therefore, apothem of hexagon = 8.46 cm then side of hexagon = apothem*2/sqrt(3) = 9.77 cm (approx) and so perimeter = 6*side = 58.63 cm


What is the area of a regular hexagon with a side of 4 and an apothem of 3 46?

Easy. Since the side is the base and the apothem is the height of the triangle, multiply them and divide by two to get the area of the triangle. 3 * 3.46 = 10.38 /2 = 5.19. Then multiply by 6 to get the area of the hexagon. 5.19 * 6 = 31.14. You multiply by 6 because you can fit 6 regular triangles in a regular hexagon. We've already found the area of one regular triangle in the hexagon.