answersLogoWhite

0

What else can I help you with?

Related Questions

How do you write an equation in standard form of a circle with a center and radius?

The standard equation of a circle, with center in (a,b) and radius r, is: (x-a)2 + (y-b)2 = r2


What is the formula for the center of the circle?

The formula for the center of a circle is given by the coordinates ((h, k)) in the standard equation of a circle, which is ((x - h)^2 + (y - k)^2 = r^2). Here, ((h, k)) represents the center of the circle, and (r) is the radius. If the equation is presented in a different form, you can derive the center by rearranging the equation to match the standard form.


What is the standard form of an equation where the poin 3-6 is on a circle whose orgin is the center?

9


What is a chord passing through the center of a circle?

a diameter


How do you Writing the Equation of a Circle in Standard Form?

(x - A)2 + (y - B)2 = R2 The center of the circle is the point (A, B) . The circle's radius is ' R '.


What is the standard form of the equation of a circle with its center at (2 -3) and passing through the point (-2 0)?

Points: (2, -3) and (-2, 0) Slope: -3/4 Equation: y = -0.75x-1.5


What is the equation of the circle with center at (3 2) and through the point (5 4).?

Equation of circle: (x-3)^2 +(y-2)^2 = 8


What are the coordinates of the center of the circle described by the equation x2 y 52 16?

The equation provided appears to have a typographical error, as it should likely be in the form of a standard circle equation. If you meant (x^2 + y^2 = 16), the center of the circle is at the coordinates (0, 0). If this is not the correct interpretation, please clarify the equation for an accurate response.


How To find the standard equation for a circle centered at the origin we use the distance formula since the radius measures?

To find the standard equation for a circle centered at the origin, we use the distance formula to define the radius. The equation is derived from the relationship that the distance from any point ((x, y)) on the circle to the center ((0, 0)) is equal to the radius (r). Thus, the standard equation of the circle is given by (x^2 + y^2 = r^2). Here, (r) is the radius of the circle.


Which is the standard equation for a circle centered at origin with raduis r?

The standard equation for a circle centered at the origin (0, 0) with radius ( r ) is given by ( x^2 + y^2 = r^2 ). In this equation, ( x ) and ( y ) represent the coordinates of any point on the circle, and ( r ) is the radius. This equation describes all points that are a distance ( r ) from the center.


What equation represents the circle whose center is (-5,3) and that passes through the point (-1,3)?

-40


What is the center of the circle given by the equation ((x plus 5)2 (y-8)21?

The equation you provided appears to be incorrectly formatted. However, if you meant to write the standard form of a circle's equation, which is ((x - h)^2 + (y - k)^2 = r^2), then the center of the circle is given by the point ((h, k)). For the specific equation you intended, please clarify the format, and I can help identify the center accordingly.