To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.
The maximum.
Vertex
maximum point :)
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
focus , directrix
Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.
The maximum.
A parabola that opens upward is a U-shaped curve where the vertex is the lowest point on the graph. It can be represented by the general equation y = ax^2 + bx + c, where a is a positive number. The axis of symmetry is a vertical line passing through the vertex, and the parabola is symmetric with respect to this line. The focus of the parabola lies on the axis of symmetry and is equidistant from the vertex and the directrix, which is a horizontal line parallel to the x-axis.
Vertex
To have a parabola with only one x-intercept, the vertex of the parabola must lie on the x-axis. This means the parabola opens either upwards or downwards, depending on the coefficient of the squared term in the equation. If the coefficient is positive, the parabola opens upwards, and if it is negative, the parabola opens downwards. By adjusting the coefficients in the equation of the parabola, you can position the vertex such that there is only one x-intercept.
Opening up, the vertex is a minimum.
The maximum point.
maximum point :)
maximum point :)