If the discriminant is negative, there are 0 interceptsIf the discriminant is zero, there is 1 interceptIf the discriminant is positive, there are 2 intercepts
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
It depends on the vertex of what!
Factorise equation, and look at what x values are needed for the equation to equal zero. Eg. x^2+5x+6 (x+3)(x+2)=0 So parabola intercepts x axis at -3 and -2.
The x intercepts are when y=0. Substitute the zero in for all y and then solve. Use quadratic formula and reduce. I got (-1+/- sqrt 10)3 about .72075922 and -1.387425887
A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.A parabola has no endpoints: it extends to infinity.
In the quadratic formula, the discriminant is b2-4ac. If the discriminant is positive, the equation has two real solutions. If it equals zero, the equation has one real solution. If the discriminant is negative, it has two imaginary solutions. This is because you find the square root of the discriminant and add or subtract it from -b and divide the sum or difference by 2a. If the square root is of a positive number, then you get two different solutions, one from adding the discriminant to -b and one from subtracting the discriminant from -b. If the square root is of zero, then it equals zero, and the solution is -b/2a. If the square root is of a negative number, then you have two imaginary solutions because you can't take the square root of a negative number and get a real number. One solution is from subtracting the discriminant from -b and dividing by 2a, and the other is from adding it to -b and dividing by 2a. The parabola on the left has a positive discriminant. The parabola in the middle has a discriminant of zero. The parabola on the right has a negative discriminant.
By completing the square y = (x+3)2+1 Axis of symmetry and vertex: x = -3 and (-3, 1) Note that the parabola has no x intercepts because the discriminant is less than zero
I think you are talking about the x-intercepts. You can find the zeros of the equation of the parabola y=ax2 +bx+c by setting y equal to 0 and finding the corresponding x values. These will be the "roots" of the parabola.
y = 8/49*x2
Solve the quadratic equation.If y = ax^2+bx+c then the intercepts arex = [-b +/- sqrt(b^2 - 4ac)]/(2a).The solutions are real if and only if b^2 >= 4ac
It depends on the vertex of what!
Factorise equation, and look at what x values are needed for the equation to equal zero. Eg. x^2+5x+6 (x+3)(x+2)=0 So parabola intercepts x axis at -3 and -2.
The quadratic (parabola) intercepts the x-axis when y = 0. So substitute y=0 into y = f(x). Then you can solve for the x-values by any number of ways: Factoring, completing the square, or Quadratic Formula. It may turn out that the values of x which satisfies y=0 are complex {have an imaginary component}, which will tell you that the parabola does not have an x-intercept.
In general, quadratic equations have graphs that are parabolas. The quadratic formula tells us how to find the roots of a quadratic equations. If those roots are real, they are the x intercepts of the parabola.
The discriminant is 49.
find the x-intercepts of the parabola with vertex (7,-12) and y-intercept (0,135). write your answer in this form:(x1,y1),(x2,y2). if necessary, round to the nearest hundredth.
To find the x-intercepts of the function ( y = 2x^2 - 8x + 5 ), we set ( y ) to zero and solve the equation ( 2x^2 - 8x + 5 = 0 ). Using the quadratic formula ( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ), where ( a = 2 ), ( b = -8 ), and ( c = 5 ), we can determine the number of x-intercepts. The discriminant ( b^2 - 4ac = (-8)^2 - 4(2)(5) = 64 - 40 = 24 ) is positive, indicating that there are two distinct x-intercepts. Thus, the function has 2 x-intercepts.