log2(31000) = 1000 log2(3)
log2(3) = 1.585 (rounded)
1000 log2(3) = log2(31000) = 1,584.96(rounded)
[log2 (x - 3)](log2 5) = 2log2 10 log2 (x - 3) = 2log2 10/log2 5 log2 (x - 3) = 2(log 10/log 2)/(log5/log 2) log2 (x - 3) = 2(log 10/log 5) log2 (x - 3) = 2(1/log 5) log2 (x - 3) = 2/log 5 x - 3 = 22/log x = 3 + 22/log 5
Due to the rubbish browser that we are compelled to use, it is not possible to use any super or subscripts so here goes, with things spelled out in detail: log to base 2a of 2b = log to base a of 2b/log to base a of 2a = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + (log to base a of a)] = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + 1]
If 2y = 50 then y*log(2) = log(50) so that y = log(50)/log(2) = 5.6439 (approx). NB: The logarithms can be taken to any base >1.
2ⁿ = 20000 → log(2ⁿ) = log(20000) → n log(2) = log(20000) → n = log(20000)/log(2) You can use logs to any base you like as long as you use the same base for each log → n ≈ 14.29
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
[log2 (x - 3)](log2 5) = 2log2 10 log2 (x - 3) = 2log2 10/log2 5 log2 (x - 3) = 2(log 10/log 2)/(log5/log 2) log2 (x - 3) = 2(log 10/log 5) log2 (x - 3) = 2(1/log 5) log2 (x - 3) = 2/log 5 x - 3 = 22/log x = 3 + 22/log 5
log 100 base e = log 100 base 10 / log e base 10 log 100 base 10 = 10g 10^2 base 10 = 2 log 10 base 10 = 2 log e base 10 = 0.434294 (calculator) log 100 base e = 2/0.434294 = 4.605175
log base 2 of [x/(x - 23)]
Due to the rubbish browser that we are compelled to use, it is not possible to use any super or subscripts so here goes, with things spelled out in detail: log to base 2a of 2b = log to base a of 2b/log to base a of 2a = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + (log to base a of a)] = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + 1]
When the logarithm is taken of any number to a power the result is that power times the log of the number; so taking logs of both sides gives: e^x = 2 → log(e^x) = log 2 → x log e = log 2 Dividing both sides by log e gives: x = (log 2)/(log e) The value of the logarithm of the base when taken to that base is 1. The logarithms can be taken to any base you like, however, if the base is e (natural logs, written as ln), then ln e = 1 which gives x = (ln 2)/1 = ln 2 This is in fact the definition of a logarithm: the logarithm to a specific base of a number is the power of the base which equals that number. In this case ln 2 is the number x such that e^x = 2. ---------------------------------------------------- This also means that you can calculate logs to any base if you can find logs to a specific base: log (b^x) = y → x log b = log y → x = (log y)/(log b) In other words, the log of a number to a given base, is the log of that number using any [second] base you like divided by the log of the base to the same [second] base. eg log₂ 8 = ln 8 / ln 2 = 2.7094... / 0.6931... = 3 since log₂ 8 = 3 it means 2³ = 8 (which is true).
You cannot solve log x- 2 unless (i) log x - 2 is equal to some number or (ii) x is equal to some number.
a log is the 'undo-er' of powers, kind of like division is the 'undo-er' of multiplication. EX: 102 = 100, then log10(100) = 2 103 = 1000, then log10(1000) = 3, in this example, we are using log base 10, this is a default base and sometimes isn't even wirten. e is probably the most common base but log base e is more simply called the natural log, or ln. so in general: logx(m) = N means that xN = m so log5(125) = 3 because 53 = 125.
inverse log of 2= 1/(log{10}2)= 1/(log2)=1/0.3010299=3.3219. hence answer is 3.3219
If 2y = 50 then y*log(2) = log(50) so that y = log(50)/log(2) = 5.6439 (approx). NB: The logarithms can be taken to any base >1.
3^(-2x + 2) = 81? log(3^(-2x + 2)) = log(81) (-2x+2)log(3) = log(81) -2x = log(81)/log(3) - 2 x = (-1/2)(log(81)/log(3)) + 1
I guess you mean the value of the power of 3 is at most 1000, not the value of 3^3, 3^4, ..., 3^1000 Logarithms tell you the power to which the base must be raised to get the number. eg for common logs (logs base 10) lg 100 = 2 since 10^2 = 100. To find the largest power of 3 which is at most 1000, the logs to base 3 or 1000 needs to be taken; if the result is not a whole number, the decimal portion is ignored (ie the number is truncated) and only the whole number is considered. [In the following log_3 means logs to base 3, and log is the log to any base, often common logs (lg) or natural logs (ln = logs to base e) are used (for the whole calculation).] log_3(1000) = log(1000)/log(3) ≈ 6.3 → highest power of 3 less than or equal to 1000 is 6, ie 3^6. Thus the powers of 3 in the range 3-1000 are: 3^1 = 3 3^2 = 9 3^3 = 27 3^4 = 81 3^5 = 243 3^6 = 729
log316 - log32 = log38