The number of four-digit combinations is 10,000 .Stick a '3' before each of them, and you have all the possible 5-digit combinations that start with 3.There are 10,000 of them. They run from 30,000 to 39,999 .
The question is incorrect since there are 210 - 1 possible combinations. The digit 0 can be in the combination or out. That gives 2 ways. With each, the digit 1 can be in the combination or out - 2*2 = 22 ways. With each, the digit 2 can be in the combination or out = 23 ways. With each, the digit 3 can be in the combination or out = 24 ways. etc. So 210 ways in all except that one of them is the null combination. Now 210 = 1024 so there are only 1023 combinations. If, instead, you allow the digits to be used many times, there is no limit to the number of combinations.
Each digit can appear in each of the 4 positions. There are 9 digits, therefore there are 9⁴ = 6561 such combinations.
There are ten combinations: one each where one of the ten digits, 0-9, is excluded.
Oh, what a lovely question! Let's paint a happy little picture here. To find the number of 6-digit combinations using 20 numbers, we can use a simple formula: 20P6, which stands for 20 permutations taken 6 at a time. This gives us 387,600 unique combinations to explore and create beautiful patterns with. Just imagine all the possibilities waiting to be discovered!
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
factorial six tat is 6*5*4*3*2*1=720 combinations
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.
It depends. If you can only use each number once, there are 720 combinations. If you can use numbers multiple times, then there are 1000 combinations, by using all numbers from 000 to 999.
The number of four-digit combinations is 10,000 .Stick a '3' before each of them, and you have all the possible 5-digit combinations that start with 3.There are 10,000 of them. They run from 30,000 to 39,999 .
The question is incorrect since there are 210 - 1 possible combinations. The digit 0 can be in the combination or out. That gives 2 ways. With each, the digit 1 can be in the combination or out - 2*2 = 22 ways. With each, the digit 2 can be in the combination or out = 23 ways. With each, the digit 3 can be in the combination or out = 24 ways. etc. So 210 ways in all except that one of them is the null combination. Now 210 = 1024 so there are only 1023 combinations. If, instead, you allow the digits to be used many times, there is no limit to the number of combinations.
To find the number of 5-digit combinations from 1 to 20, we first calculate the total number of options for each digit position. Since the range is from 1 to 20, there are 20 options for the first digit, 20 options for the second digit, and so on. Therefore, the total number of 5-digit combinations is calculated by multiplying these options together: 20 x 20 x 20 x 20 x 20 = 3,200,000 combinations.
Each digit can appear in each of the 4 positions. There are 9 digits, therefore there are 9⁴ = 6561 such combinations.
about 12
To calculate the number of 4-digit combinations that can be made with 4 digits, we can use the formula for permutations. Since there are 10 possible digits (0-9) for each of the 4 positions, the total number of combinations is 10^4, which equals 10,000. This is because each digit can be selected independently for each position, resulting in a total of 10 choices for each of the 4 positions.
the place of each digit help the value of the number by using your multuplication
The answer will depend on how many digits there are in each of the 30 numbers. If the 30 numbers are all 6-digit numbers then the answer is NONE! If the 30 numbers are the first 30 counting numbers then there are 126 combinations of five 1-digit numbers, 1764 combinations of three 1-digit numbers and one 2-digit number, and 1710 combinations of one 1-digit number and two 2-digit numbers. That makes a total of 3600 5-digit combinations.