Without repetition, just one. In a combination the order of the numbers is irrelevant.
Using the formula n!/r!(n-r)! where n is the number of possible numbers and r is the number of numbers chosen, there are 13983816 combinations of six numbers between 1 and 49 inclusive.
If there are no restrictions on duplicated numbers or other patterns of numbers then there are 10 ways of selecting the first digit and also 10 ways of selecting the second digit. The number of combinations is therefore 10 x 10 = 100.
There are 360 of them.
Oh, what a lovely question! Let's paint a happy little picture here. To find the number of 6-digit combinations using 20 numbers, we can use a simple formula: 20P6, which stands for 20 permutations taken 6 at a time. This gives us 387,600 unique combinations to explore and create beautiful patterns with. Just imagine all the possibilities waiting to be discovered!
1,000,000. Specifically, they are all numbers from 000000-999999
Number of 7 digit combinations out of the 10 one-digit numbers = 120.
To calculate the number of different 4-digit combinations that can be made using numbers 0 through 9, we use the concept of permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the number of options for each digit (10 in this case) and r is the number of digits (4 in this case). Therefore, the number of different 4-digit combinations that can be made using numbers 0 through 9 is 10^4, which equals 10,000 combinations.
It depends. If you can only use each number once, there are 720 combinations. If you can use numbers multiple times, then there are 1000 combinations, by using all numbers from 000 to 999.
To calculate the number of 4-digit combinations you can get from the numbers 1, 2, 2, and 6, we need to consider that the number 2 is repeated. Therefore, the total number of combinations is calculated using the formula for permutations of a multiset, which is 4! / (2!1!1!) = 12. So, there are 12 unique 4-digit combinations that can be formed from the numbers 1, 2, 2, and 6.
Using the formula n!/r!(n-r)! where n is the number of possible numbers and r is the number of numbers chosen, there are 13983816 combinations of six numbers between 1 and 49 inclusive.
There are 840 4-digit combinations without repeating any digit in the combinations.
If there are no restrictions on duplicated numbers or other patterns of numbers then there are 10 ways of selecting the first digit and also 10 ways of selecting the second digit. The number of combinations is therefore 10 x 10 = 100.
There are 360 of them.
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
Oh, what a lovely question! Let's paint a happy little picture here. To find the number of 6-digit combinations using 20 numbers, we can use a simple formula: 20P6, which stands for 20 permutations taken 6 at a time. This gives us 387,600 unique combinations to explore and create beautiful patterns with. Just imagine all the possibilities waiting to be discovered!
1,000,000. Specifically, they are all numbers from 000000-999999
the answer is = first 2-digit number by using 48= 28,82 and in 3 digit is=282,228,822,822