There are 8*7/(2*1) = 28 combinations.
There are 9C2 = 9*8/(2*1) = 36 2-digit combinations.
There are 8C6 = 8*7/(2*1) = 28 combinations.
8
28, or 56 counting reversals
There are 9C2 = 9*8/(2*1) = 36 2-digit combinations.
8*7/(2*1) = 28
To calculate the combinations for the numbers 2, 6, and 8, we need to use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, we have 3 numbers (n=3) and we want to choose 2 of them (r=2). So, the combinations would be 3C2 = 3! / 2!(3-2)! = 3. Therefore, the combinations for 2, 6, and 8 are (2, 6), (2, 8), and (6, 8).
Well, honey, with 3 numbers to choose from (3, 6, 9), you can make 6 combinations because you can arrange them in any order. So, it's like a little math party with 6 different ways to mix and match those digits. Hope that clears things up for ya!
10 combinations- 4&7, 4&0, 4&8, 4&2, 7&0, 7&8, 7&2, 0&8, 0&2, and 8&2
8
To calculate the number of 3-digit combinations that can be made from the numbers 1-9, we can use the formula for permutations. Since repetition is allowed, we use the formula for permutations with repetition, which is n^r, where n is the total number of options (10 in this case) and r is the number of digits in each combination (3 in this case). Therefore, the total number of 3-digit combinations that can be made from the numbers 1-9 is 10^3 = 1000.
You can make 5 combinations of 1 number, 10 combinations of 2 numbers, 10 combinations of 3 numbers, 5 combinations of 4 numbers, and 1 combinations of 5 number. 31 in all.
There are 8!/[6!(8-6)!] = 8*7/2 = 28 - too many to list.
1 byte is 8 bits. That's 8 1s or 0s. 2 bytes is 8*2=16 bits (1s/0s). That is 2^16=65536 possibilities. Therefore, there are 65,536 different combinations with 2 bytes.
There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.There are 10 combinations of 1 number,10*9/(2*1) = 45 combinations of 2 numbers,10*9*8/(3*2*1) = 120 combinations of 3 numbers,10*9*8*7/(4*3*2*1) = 210 combinations of 4 numbers,10*9*8*7*6/(5*4*3*2*1) = 252 combinations of 5 numbers,210 combinations of 6 numbers,120 combinations of 7 numbers,45 combinations of 8 numbers,10 combinations of 9 numbers, and1 combination of 10 numbers.All in all, 210 - 1 = 1023 combinations. I have neither the time nor inclination to list them all.
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.