answersLogoWhite

0

The length is 3*sqrt(5) = 6.7082, approx.

User Avatar

Clark Rosenbaum

Lvl 10
3y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: If A (-2 -4) and B (-8 4) what is the length of?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the length of a right triangle if the base is 8 and hypotenuse is 10?

Use the Pythagorean theorem. a^2 + b^2 = c^2 a = base b = length c = hypotenuse 8^2 + b^2 = 10^2 b^2 = 10^2 - 8^2 b = sqrt(10^2 - 8^2) b = sqrt(100 - 64) b = sqrt(36 b = 6 ------------------the length


How can you express in radical form the length of the diagonal of a square whose sides are each 2?

Let 'a' and 'b' be the length of one side and diagonal of a square. Pythagorus's theorem as applied to a square: a^2 + a^2 = b^2. Substituting a = 2 into the equation, we have b^2 = 2^2 + 2^2 = 8. b = sqrt(8) = 2 * sqrt(2). Q.E.D. ===========================


Can you solve for b in the equation 12 equals negative 4 over 2 time negative 2 plus b?

12 = -4/2 * -2 + b 12 = -2 * -2 + b 12 = 4 + b 8 = b


What is the transformation of B(4 8) when dilated by a scale factor of 2 using the origin as the center of dilation?

To find the transformation of point B(4, 8) when dilated by a scale factor of 2 using the origin as the center of dilation, you multiply each coordinate by the scale factor. Thus, the new coordinates will be B'(4 * 2, 8 * 2), which simplifies to B'(8, 16). Therefore, point B(4, 8) transforms to B'(8, 16) after the dilation.


If A (-2 -4) and B (-8 4) what is the length of the line?

Since you know that it is a parallelogram (not parallellogram!) you already know that the opposite sides are mutually parallel. All you need to do is to establish that any pair of adjacent sides are of equal length, or equivalently, the squares of these lengths are equal. The squared length of the line AB where A = (p,q) and B = (r,s) is (p - r)^2 + (q - s)^2.