False
Imagine if you will a circle with a chord drawn through it and a line running from the center of that chord to the center of the circle. That line is necessarily perpendicular to the chord. This means you have a right triangle whose hypotenuse is the radius of the circle. The radius is thus given by: r = sqrt{(1/2 chord length)^2 + (length of perpendicular line)^2} The actual formula to find the radius is as follows: r= C squared/8a + a/2, where C is the chord length, and a is the distance from center point of the chord to the circle , and a and C form an angle of 90 degrees. the entire formula before simplification is r = sqrt {(1/2 C)^2 + (r-a)^2}
No, but the diameter of a circle is its largest chord
A chord is when two points in a circle are connected by segment. A diameter is a chord, but not a radius. The radius is not a complete segment in the circle
Draw a line from any part on the outside of a circle to the exact center of the circle. * * * * * That is fine if you know where the center is but not much use if you are just given a circle and do not know where the exact centre is. In this case: Draw a chord - a straight line joining any two points on the circumference of the circle. Then draw the perpendicular bisector of the chord. Draw another chord and its perpendicular bisector. The two perpendicular bisectors will meet at the centre.
The radius of the circle that is perpendicular to a chord intersects the chord at its midpoint, so it is said to bisect the chord.
If radius of a circle intersects a chord then it bisects the chord only if radius is perpendicular to the chord.
Bisects
Perpendicular.
Bisects that chord
False
A Chord. Or another radius!
YesAt a right angle
its false
true, because both distances of the chord are congruent
Imagine if you will a circle with a chord drawn through it and a line running from the center of that chord to the center of the circle. That line is necessarily perpendicular to the chord. This means you have a right triangle whose hypotenuse is the radius of the circle. The radius is thus given by: r = sqrt{(1/2 chord length)^2 + (length of perpendicular line)^2} The actual formula to find the radius is as follows: r= C squared/8a + a/2, where C is the chord length, and a is the distance from center point of the chord to the circle , and a and C form an angle of 90 degrees. the entire formula before simplification is r = sqrt {(1/2 C)^2 + (r-a)^2}
No, but the diameter of a circle is its largest chord