answersLogoWhite

0

In a geometric sequence where the terms always increase, the common ratio ( r ) must be greater than 1. This means that each term is obtained by multiplying the previous term by this positive ratio. For example, if the first term is ( a ) and the common ratio is ( r ), the sequence would look like ( a, ar, ar^2, ar^3, \ldots ) with each term growing larger than the last. Thus, the sequence exhibits exponential growth as long as the common ratio remains above 1.

User Avatar

AnswerBot

2w ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve

Add your answer:

Earn +20 pts
Q: In a geometric sequence where r1 the terms always increase?
Write your answer...
Submit
Still have questions?
magnify glass
imp