When a pre-image undergoes a translation, each coordinate of the pre-image is adjusted by adding a fixed value, known as the translation vector. This means that every point of the pre-image moves the same distance and direction, resulting in a new set of coordinates for the image. The relative positions of the points remain unchanged, preserving the shape and size of the figure. For example, if a point (x, y) is translated by (a, b), its new coordinates will be (x + a, y + b).
To find the image of points A, B, and C after a dilation centered at the origin with a scale factor of 2, you multiply each coordinate by 2. The new coordinates are A'(12, 14), B'(8, 4), and C'(0, 14). Thus, the images of the points after dilation are A'(12, 14), B'(8, 4), and C'(0, 14).
The coordinates of the image are typically related to the coordinates of the preimage through a specific transformation, which can include translations, rotations, reflections, or dilations. For example, if a transformation is defined by a function or a matrix, the coordinates of the image can be calculated by applying that function or matrix to the coordinates of the preimage. Thus, the relationship depends on the nature of the transformation applied.
To determine the coordinates of the image produced by a composition of transformations, you'll need to apply each transformation step-by-step to the original coordinates. Start with the first transformation, apply it to the coordinates, and then take the resulting coordinates and apply the next transformation. The final coordinates after all transformations will give you the image's location. If specific transformations and original coordinates are provided, I can give a more precise answer.
To determine the coordinates of point D in trapezium ABCD, we need the coordinates of points A, B, and C, as well as the requirement that one pair of opposite sides (either AB and CD or AD and BC) are parallel. If AB is parallel to CD, then the y-coordinates of points A and B must equal the y-coordinates of points C and D, respectively. Alternatively, if AD is parallel to BC, then the x-coordinates of A and D must equal the x-coordinates of B and C. Please provide the specific coordinates of points A, B, and C for a precise answer.
They are (a, b-4).
Point A has coordinates (x,y). Point B (Point A rotated 270°) has coordinates (y,-x). Point C (horizontal image of Point B) has coordinates (-y,-x).
When a pre-image undergoes a translation, each coordinate of the pre-image is adjusted by adding a fixed value, known as the translation vector. This means that every point of the pre-image moves the same distance and direction, resulting in a new set of coordinates for the image. The relative positions of the points remain unchanged, preserving the shape and size of the figure. For example, if a point (x, y) is translated by (a, b), its new coordinates will be (x + a, y + b).
The coordinates of the image are typically related to the coordinates of the preimage through a specific transformation, which can include translations, rotations, reflections, or dilations. For example, if a transformation is defined by a function or a matrix, the coordinates of the image can be calculated by applying that function or matrix to the coordinates of the preimage. Thus, the relationship depends on the nature of the transformation applied.
That would depend on its original coordinates and in which direction clockwise or anti clockwise of which information has not been given.
To determine the coordinates of the image produced by a composition of transformations, you'll need to apply each transformation step-by-step to the original coordinates. Start with the first transformation, apply it to the coordinates, and then take the resulting coordinates and apply the next transformation. The final coordinates after all transformations will give you the image's location. If specific transformations and original coordinates are provided, I can give a more precise answer.
(2, -6)
(2, -4)
B is (-5, 9).
it is nothing
To provide the coordinates of point W on the final image, I would need specific details about the image or a description of the context in which point W is located. Please share additional information or a reference to the image, and I’d be glad to help!
They are (-a, b).