Cos(x) = Sin(2x) Using angle-addition, we have Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a). From that, we see Sin(2x) = Sin(x)Cos(x)+Sin(x)Cos(x) = 2Sin(x)Cos(x) Cos(x) = 2Sin(x)Cos(x) If Cos(x) = 0, then the two sides are equal. This occurs at x= Pi/2 + nPi, where n is an integer and Pi is approximately 3.14. If Cos(x) doesn't equal 0, then we can divide it out. Then, 1 = 2 Sin(x) , or 1/2 = Sin(x) This occurs when x = Pi/6 or 5Pi/6, plus or minus any multiples of 2 Pi.
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
(1/8)(x-sin 4x)
Sin(2x) = -cos(x)But sin(2x) = 2 sin(x) cos(x)Substitute it:2 sin(x) cos(x) = -cos(x)Divide each side by cos(x):2 sin(x) = -1sin(x) = -1/2x = 210°x = 330°
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
Multiply both sides by sin(1-cos) and you lose the denominators and get (sin squared) minus 1+cos times 1-cos. Then multiply out (i.e. expand) 1+cos times 1-cos, which will of course give the difference of two squares: 1 - (cos squared). (because the cross terms cancel out.) (This is diff of 2 squares because 1 is the square of 1.) And so you get (sin squared) - (1 - (cos squared)) = (sin squared) + (cos squared) - 1. Then from basic trig we know that (sin squared) + (cos squared) = 1, so this is 0.
sin squared
Sin squared, cos squared...you removed the x in the equation.
(sin(x))^2+(cos(x))^2=1
sin2 + cos2 = 1 So, (1 - 2*cos2)/(sin*cos) = (sin2 + cos2 - 2*cos2)/(sin*cos) = (sin2 - cos2)/(sin*cos) = sin2/(sin*cos) - cos2/(sin*cos) = sin/cos - cos-sin = tan - cot
Cos(x) = Sin(2x) Using angle-addition, we have Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a). From that, we see Sin(2x) = Sin(x)Cos(x)+Sin(x)Cos(x) = 2Sin(x)Cos(x) Cos(x) = 2Sin(x)Cos(x) If Cos(x) = 0, then the two sides are equal. This occurs at x= Pi/2 + nPi, where n is an integer and Pi is approximately 3.14. If Cos(x) doesn't equal 0, then we can divide it out. Then, 1 = 2 Sin(x) , or 1/2 = Sin(x) This occurs when x = Pi/6 or 5Pi/6, plus or minus any multiples of 2 Pi.
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
2 cos * cos * -1 = 2cos(square) * -1 =cos(square) + cos(square) *-1 =1- sin(square) +cos(square) * -1 1 - 1 * -1 =0
The answer to the math question Cos 5t cos 3t -square root 3 2 - sin 5t cos 3t equals 0. In order to find this answer you will have to find out what each letter is.
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)