Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "times", "equals".
The Nth term in the series is [ 2N ] .
The sequence 1, 3, 5, 7, 9 is an arithmetic sequence where each term increases by 2. The nth term can be expressed as ( a_n = 2n - 1 ). Therefore, for any positive integer ( n ), the nth term of the sequence is ( 2n - 1 ).
The expression "2n 1" appears to be missing some operators or context. If you're referring to the nth term of a sequence where each term is defined as (2n + 1), then the nth term would be (2n + 1). This represents an arithmetic sequence where each term increases by 2, starting from 3 when (n = 1). If you meant something else, please clarify for a more accurate answer.
The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
The nth term of the sequence is 2n + 1.
Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.
The Nth term in the series is [ 2N ] .
The nth term is 2n+5 and so the next number is 17
The expression "2n 1" appears to be missing some operators or context. If you're referring to the nth term of a sequence where each term is defined as (2n + 1), then the nth term would be (2n + 1). This represents an arithmetic sequence where each term increases by 2, starting from 3 when (n = 1). If you meant something else, please clarify for a more accurate answer.
Ok, take the formula dn+(a-d) this is just when having a sequence with a common difference dn+(a-d) when d=common difference, a=the 1st term, n=the nth term - you have the sequence 2, 4, 6, 8... and you want to find the nth term therefore: dn+(a-d) 2n+(2-2) 2n Let's assume you want to find the 5th term (in this case, the following number in the sequence) 2(5) = 10 (so the fifth term is 10)
The nth term of the sequence 2n + 1 is calculated by substituting n with the term number. So, the tenth term would be 2(10) + 1 = 20 + 1 = 21. Therefore, the tenth term of the sequence 2n + 1 is 21.
The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).
(Term)n = 59 - 2n
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
It is: 27-2n