answersLogoWhite

0

If you are refering to the double-angle formula for sin(x), the best way is to use what is known as Euler's identity. Euler's identity is eix = cos(x) + i*sin(x) where x is any real angle in radians, e is Euler's constant 2.71828182845... and i is the imaginary number: SQRT(-1). Assuming that is true, then ei(2x) = cos(2x) + i*sin(2x) and that is the same as saying (eix)2= cos(2x) + i*sin(2x) and substituting from the original equation: (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x). By distribution, remembering that i2 = -1, we get cos2(x) + i*2*sin(x)*cos(x) - sin2(x) = cos(2x) + i*sin(2x). Now we can separate the equation into its real and imaginary parts. cos2(x) - sin2(x) = cos(2x) and i*2*sin(x)*cos(x) = i*sin(2x), and after i cancels, there's our good old double angle formula.

If derive refers to derivative, then use the chain rule. d(sin(2x))/dx=2cos(2x)

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine

Add your answer:

Earn +20 pts
Q: How do you derive sin2x?
Write your answer...
Submit
Still have questions?
magnify glass
imp