answersLogoWhite

0


Best Answer

acording to me the value is 0 because the value of log 1 at any base is always 0.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is log 1 to the base 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Suppose aneq 0. Compute log 2a 2b in terms of a and b.?

Due to the rubbish browser that we are compelled to use, it is not possible to use any super or subscripts so here goes, with things spelled out in detail: log to base 2a of 2b = log to base a of 2b/log to base a of 2a = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + (log to base a of a)] = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + 1]


Solve ln y equals xln e?

ln is the natural logarithm. That is it is defined as log base e. As we all know from school, log base 10 of 10 = 1 just as log base 3 of 3 = 1, so, likewise, log base e of e = 1 and 1.x = x. so we have ln y = x. Relace ln with log base e, and you should get y = ex


What is log of 1 to base 10?

It is zero


What is log base 5of 125?

log(5)125 = log(5) 5^(3) = 3log(5) 5 = 3 (1) = 3 Remember for any log base if the coefficient is the same as the base then the answer is '1' Hence log(10)10 = 1 log(a) a = 1 et.seq., You can convert the log base '5' , to log base '10' for ease of the calculator. Log(5)125 = log(10)125/log(10)5 Hence log(5)125 = log(10) 5^(3) / log(10)5 => log(5)125 = 3log(10)5 / log(10)5 Cancel down by 'log(10)5'. Hence log(5)125 = 3 NB one of the factors of 'log' is log(a) a^(n) The index number of 'n' can be moved to be a coefficient of the 'log'. Hence log(a) a^(n) = n*log(a)a Hope that helps!!!!!


What is the logarithm of log -1?

Assuming you are asking about the natural logarithms (base e):log (-1) = i x pithereforelog (log -1) = log (i x pi) = log i + log pi = (pi/2)i + log pi which is approximately 1.14472989 + 1.57079633 i

Related questions

What is log base 3 of (x plus 1) log base 2 of (x-1)?

The browser which is used for posting questions is almost totally useless for mathematical questions since it blocks most symbols.I am assuming that your question is about log base 3 of (x plus 1) plus log base 2 of (x-1).{log[(x + 1)^log2} + {log[(x - 1)^log3}/log(3^log2) where all the logs are to the same base - whichever you want. The denominator can also be written as log(3^log2)This can be simplified (?) to log{[(x + 1)^log2*(x - 1)^log3}/log(3^log2).As mentioned above, the expression can be to any base and so the expression becomesin base 2: log{[(x + 1)*(x - 1)^log3}/log(3) andin base 3: log{[(x + 1)^log2*(x - 1)}/log(2)


Suppose aneq 0. Compute log 2a 2b in terms of a and b.?

Due to the rubbish browser that we are compelled to use, it is not possible to use any super or subscripts so here goes, with things spelled out in detail: log to base 2a of 2b = log to base a of 2b/log to base a of 2a = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + (log to base a of a)] = [(log to base a of 2) + (log to base a of b)] / [(log to base a of 2) + 1]


Solve ln y equals xln e?

ln is the natural logarithm. That is it is defined as log base e. As we all know from school, log base 10 of 10 = 1 just as log base 3 of 3 = 1, so, likewise, log base e of e = 1 and 1.x = x. so we have ln y = x. Relace ln with log base e, and you should get y = ex


What is log to the base of 2 0.5?

- 1


What is log of 1 to base 10?

It is zero


Differentiate log x?

The derivative of ln x, the natural logarithm, is 1/x.Otherwise, given the identity logbx = log(x)/log(b), we know that the derivative of logbx = 1/(x*log b).ProofThe derivative of ln x follows quickly once we know that the derivative of ex is itself. Let y = ln x (we're interested in knowing dy/dx)Then ey = xDifferentiate both sides to get ey dy/dx = 1Substitute ey = x to get x dy/dx = 1, or dy/dx = 1/x.Differentiation of log (base 10) xlog (base 10) x= log (base e) x * log (base 10) ed/dx [ log (base 10) x ]= d/dx [ log (base e) x * log (base 10) e ]= [log(base 10) e] / x= 1 / x ln(10)


What is the logarithm of log -1?

Assuming you are asking about the natural logarithms (base e):log (-1) = i x pithereforelog (log -1) = log (i x pi) = log i + log pi = (pi/2)i + log pi which is approximately 1.14472989 + 1.57079633 i


What is the inverse log of 2?

inverse log of 2= 1/(log{10}2)= 1/(log2)=1/0.3010299=3.3219. hence answer is 3.3219


What is log 100 base e?

log 100 base e = log 100 base 10 / log e base 10 log 100 base 10 = 10g 10^2 base 10 = 2 log 10 base 10 = 2 log e base 10 = 0.434294 (calculator) log 100 base e = 2/0.434294 = 4.605175


How do you solve log x plus log 8 equals 1?

log(x)+log(8)=1 log(8x)=1 8x=e x=e/8 You're welcome. e is the irrational number 2.7....... Often log refers to base 10 and ln refers to base e, so the answer could be x=10/8


Derivative of log?

The derivative of a log is as follows: 1 divided by xlnb Where x is the number beside the log Where b is the base of the log and ln is just the natural log.


What is log base 5of 125?

log(5)125 = log(5) 5^(3) = 3log(5) 5 = 3 (1) = 3 Remember for any log base if the coefficient is the same as the base then the answer is '1' Hence log(10)10 = 1 log(a) a = 1 et.seq., You can convert the log base '5' , to log base '10' for ease of the calculator. Log(5)125 = log(10)125/log(10)5 Hence log(5)125 = log(10) 5^(3) / log(10)5 => log(5)125 = 3log(10)5 / log(10)5 Cancel down by 'log(10)5'. Hence log(5)125 = 3 NB one of the factors of 'log' is log(a) a^(n) The index number of 'n' can be moved to be a coefficient of the 'log'. Hence log(a) a^(n) = n*log(a)a Hope that helps!!!!!