cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
From math class, some trigonometric identities: cot x = 1/tan x csc x = 1/sin x sec x = 1/cos x There are no built-in cot or csc formulas, so use the above. Remember that these give errors when tan x, sin x, or cos x are equal to 0.
For a start, try converting everything to sines and cosines.
sin(45) = cos(45) = 1/sqrt(2) tan(45) = cot(45)= 1 csc(45) = sec(45) = sqrt(2)
sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)
There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.
cosec(q)*cot(q)*cos(q) = 1/sin(q)*cot(q)*cos(q) = cot2(q)
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
cot 70 + 4 cos 70 = cos 70 / sin 70 + 4 cos 70 = cos 70 (1/sin 70 + 4) = cos 70 (csc 70 + 4) Numerical answer varies, depending on whether 70 is in degrees, radians, or grads.
sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)
From math class, some trigonometric identities: cot x = 1/tan x csc x = 1/sin x sec x = 1/cos x There are no built-in cot or csc formulas, so use the above. Remember that these give errors when tan x, sin x, or cos x are equal to 0.
Suppose csc(x)*sin(x) = cos(x)*cot(x) + y then, ince csc(x) = 1/sin(x), and cot(x) = cos(x)/sin(x), 1 = cos(x)*cos(x)/sin(x) + y so y = 1 - cos2(x)/sin(x) = 1 - [1 - sin2(x)]/sin(x) = [sin2(x) + sin(x) - 1]/sin(x)
Sin(30) = 1/2 Sin(45) = root(2)/2 Sin(60) = root(3)/2 Cos(30) = root(3)/2 Cos(45) = root(2)/2 Cos(60) = 1/2 Tan(30) = root(3)/3 Tan(45) = 1 Tan(60) = root(3) Csc(30) = 2 Csc(45) = root(2) Csc(60) = 2root(3)/3 Sec(30) = 2root(3)/3 Sec(45) = root(2) Sec(60) = 2 Cot(30) = root(3) Cot(45) = 1 Cot(60) = root(3)/3
For a start, try converting everything to sines and cosines.
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
Without an "equals" sign somewhere, no question has been asked,so there's nothing there that needs an answer.Is it the sum that you're looking for ?csc(x) + cot(x) = 1/sin(x) + cos(x)/sin(x) = [1 + cos(x)] / sin(x)
sin(45) = cos(45) = 1/sqrt(2) tan(45) = cot(45)= 1 csc(45) = sec(45) = sqrt(2)