answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: What is the antiderivaative of xlnx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the derivative of y equals xln x?

(xlnx)' = lnx + 1


What is the derivative of lnlnx?

1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]


What has the exact same variable raised to the same exponent?

An expression that has the same variable raised to the same exponent is x^x. This expression does not have a formal name, however it is worth noting that x^x = e^xlnx.


What is the derivative of cos x raised to the x?

cos(xx)?d/dx(cosu)=-sin(u)*d/dx(u)d/dx(cos(xx))=-sin(xx)*d/dx(xx)-The derivative of xx is:y=xx ;You have to use implicit derivation because there is no formula for taking the derivative of uu.lny=lnxxlny=xlnx-The derivative of lnx is:d/dx(lnu)=(1/u)*d/dx(u)-d/dx(uv)= u*dv/dx+v*du/dxTherefore:(1/y)*dy/dx=x*[(1/x)*d/dx(x)]+lnx(d/dx(x))-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1(1/y)*dy/dx=x*[(1/x)*(1)]+lnx(1)(1/y)*dy/dx=x*[(1/x)]+lnx(1/y)*dy/dx=(x/x)+lnx(1/y)*dy/dx=1+lnxdy/dx=y(1+lnx) ;Multiply y to both sidesdy/dx=xx(1+lnx) ;y=xx, so replace the y with xxd/dx(cos(xx))=-sin(xx)*[xx*(1+lnx)]d/dx(cos(xx))=-(1+lnx)*xx*sin(xx)(cosx)x?Again with the implicit derivation:y=(cosx)xlny=x*ln(cosx)(1/y)*dy/dx=x[d/dx(lncosx)]+lncosx(d/dx(x))(1/y)*dy/dx=x[(1/cosx)*(-sinx)(1)]+lncosx(1) ;The derivative of lncosx is (1/cosx)*d/dx(cosx). The derivative of cosx is (-sinx)*d/dx (x). The derivative of x is 1.(1/y)*dy/dx=x[(1/cosx)*(-sinx)]+lncosx(1/y)*dy/dx=x[-tanx]+lncosx(1/y)*dy/dx=-xtanx+lncosxdy/dx=y(-xtanx+lncosx) ;Multiply both sides by ydy/dx=(cosx)x(-xtanx+lncosx) ;y=(cosx)x, replace all y's with (cosx)xdy/dx=(cosx)x(-xtanx+lncosx)=(cosx)x-1(cosx*lncosx-xsinx)