answersLogoWhite

0

-- sin(x) is a number. It's the sine of the angle 'x'.

-- sin-1(x) is an angle. It's the angle whose sine is the number 'x'.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: What is the difference between sin x and sin -1 x .?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Why is 2 the answer for amplitude of y equals -2 sin x?

4


What is the answer to cos square x divide by 1 minus sin x?

cos2 x /(1 - sin x)= (1 - sin2 x )/(1 - sin x)= (1 + sin x)(1 - sin x)/(1 - sin x)= 1 + sin x


Prove each Indentity tanx mins sinx divided by tanxsinx equals tanxsinx divided by tanx plus sinx?

(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True


What is the integral of 1 divided by sin x plus cos x?

The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x