The limit does not exist.
As x goes to infinity, the limit does not exist.
The limit of cos2(x)/x as x approaches 0 does not exist. As x approaches 0 from the left, the limit is negative infinity. As x approaches 0 from the right, the limit is positive infinity. These two values would have to be equal for a limit to exist.
limit x tends to infinitive ((e^x)-1)/(x)
There are multiple ways to interpret this question-that is, you could mean either (5-x+cosx)/x or 5-x +(cosx/x). The limit of the second option is negative infinity because as x approaches infinity, |cosx/x|≤1, so 5-x+cosx/x is very close to 5-x, and 5-infinity is basically negative infinity. For the first option, we consider that -1≤cosx≤1. This implies that, as x approaches infinity, lim of (5-x-1)/x≤lim of (5-x+cosx)/x≤lim of (5-x+1)/x. Simplifying, we get that, as x approaches infinity, lim of (4-x)/x≤lim of (5-x+cosx)/x≤(6-x)/x. Simplifying our new limits, we get -1≤lim of (5-x+cosx)/x≤1. It is now clear that the limit of (5-x+cosx)/x as x approaches infinity =negative 1.
the limit [as x-->5] of the function f(x)=2x is 5 the limit [as x-->infinity] of the function f(x) = 2x is infinity the limit [as x-->infinity] of the function f(x) = 1/x is 0 the limit [as x-->infinity] of the function f(x) = -x is -infinity
What is the limit as x approaches infinity of the square root of x? Ans: As x approaches infinity, root x approaches infinity - because rootx increases as x does.
The limit does not exist.
Infinity
As x goes to infinity, the limit does not exist.
The limit of cos2(x)/x as x approaches 0 does not exist. As x approaches 0 from the left, the limit is negative infinity. As x approaches 0 from the right, the limit is positive infinity. These two values would have to be equal for a limit to exist.
limit x tends to infinitive ((e^x)-1)/(x)
The log(infinity) does not exist. It is impossible to evaluate because infinity is not a number. When evaluating limits infinity is a special case of a nonexistent limit. The limit of the log(x) as x approaches infinity is infinity because log(x) increases without bound when x gets extremely large.
X over infinity does not exist but you can predict what it would be as you approach infinity, the limit, so to speak. It should be zero, if it does approach a number.
There are multiple ways to interpret this question-that is, you could mean either (5-x+cosx)/x or 5-x +(cosx/x). The limit of the second option is negative infinity because as x approaches infinity, |cosx/x|≤1, so 5-x+cosx/x is very close to 5-x, and 5-infinity is basically negative infinity. For the first option, we consider that -1≤cosx≤1. This implies that, as x approaches infinity, lim of (5-x-1)/x≤lim of (5-x+cosx)/x≤lim of (5-x+1)/x. Simplifying, we get that, as x approaches infinity, lim of (4-x)/x≤lim of (5-x+cosx)/x≤(6-x)/x. Simplifying our new limits, we get -1≤lim of (5-x+cosx)/x≤1. It is now clear that the limit of (5-x+cosx)/x as x approaches infinity =negative 1.
No, limit can tend to any finite number including 0. It is also possible that the limit does not tend to any finite value or approaches infinity. Example: The limit of x^2+5 tend to 6 as x approaches -1.
No, because infinity has no limit.