8
Yes, because GB = GR - RB
Line segment: (3, 5) and (7, 7) Midpoint: (3+7)/2, (5+7)/2 = (5, 6) Slope or gradient: (7-5)/(7-3) = 1/2 Perpendicular slope = -2 Equation: y -6 = -2(x-5) => y = -2x+10+6 => y = -2x+16 So the perpendicular bisector equation is y = -2x+16
Midpoint = (6+16)/2 and (6-6)/2 = (11, 0)
Points: (7, 7) and (3, 5) Midpoint: (5, 6) Slope: 1/2 Perpendicular slope: -2 Use: y-6 = -2(x-5) Perpendicular bisector equation: y = -2x+16 or as 2x+y-16 = 0
If you mean endpoints of (16, 5) and (-6, -9) then its midpoint is (5, -2)
Endpoints: (-1, 3) and (-2, -5) Midpoint: (-3/2, -1) Slope: 8 Perpendicular slope: -1/8 Perpendicular bisector equation: y --1 = -1/8--3/2 => y = -1/8x -19/16
Yes, while naming a line segment, as long as the two points are on the line, it does not matter what order they are in or which points they are. well their not
midpoint between 4-16
8
midpoint between 4-16
Yes, because GB = GR - RB
Endpoints: (3, 5) and (7,7) Midpoint: (5, 6) Slope: 1/2 Perpendicular slope: -2 Perpendicular bisector equation: y-6 = -2(x-5) => y = -2x+16
Midpoint = (3+7)/2, (5+7)/2 = (5, 6) Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2 Slope of the perpendicular = -2 Equation of the perpendicular bisector: y-y1 = m(x-x1) y-6 =-2(x-5) y = -2x+10+6 Equation of the perpendicular bisector is: y = -2x+16
Because b is the mid point of pq, pb = qb. pb is half as long as pq Eq#1....pb = 1/2 pq Eq#2....pq = pb +8 Substitute Eq#1 into Eq #2 pq = 1/2 pq + 8 subtracting1/2 pq from both sides 1/2 pq = 8 pq = 16 problem here: you can't subtract 1/2 ... you would have to divide.
Line segment: (3, 5) and (7, 7) Midpoint: (3+7)/2, (5+7)/2 = (5, 6) Slope or gradient: (7-5)/(7-3) = 1/2 Perpendicular slope = -2 Equation: y -6 = -2(x-5) => y = -2x+10+6 => y = -2x+16 So the perpendicular bisector equation is y = -2x+16
Midpoint = (6+16)/2 and (6-6)/2 = (11, 0)