One of the infinitely many possible rules for the nth term of the sequence is
t(n) = 4n - 1
The sequence 3, 7, 11 is an arithmetic sequence where the first term is 3 and the common difference is 4. The nth term formula for an arithmetic sequence can be expressed as ( a_n = a_1 + (n - 1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. Substituting the values, the nth term formula for this sequence is ( a_n = 3 + (n - 1) \cdot 4 ), which simplifies to ( a_n = 4n - 1 ).
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
The sequence 2, 5, 8, 11 is an arithmetic sequence where the first term is 2 and the common difference is 3. The nth term can be expressed using the formula: ( a_n = 2 + (n - 1) \cdot 3 ). Simplifying this gives ( a_n = 3n - 1 ). Thus, the nth term is ( 3n - 1 ).
Double it minus the previous number.
To find the nth term of the sequence 3, 11, 25, 45, we first look for a pattern in the differences between the terms. The first differences are 8, 14, and 20, and the second differences are 6, 6, indicating that the sequence is quadratic. We can express the nth term as ( a_n = An^2 + Bn + C ). Solving for A, B, and C using the given terms, we find the nth term is ( a_n = 3n^2 - 3n + 3 ).
The nth term in this sequence is 4n + 3.
The nth term of the sequence is 2n + 1.
3 11
The nth term is 4n-1 and so the next term will be 19
The sequence 3, 7, 11 is an arithmetic sequence where the first term is 3 and the common difference is 4. The nth term formula for an arithmetic sequence can be expressed as ( a_n = a_1 + (n - 1)d ), where ( a_1 ) is the first term and ( d ) is the common difference. Substituting the values, the nth term formula for this sequence is ( a_n = 3 + (n - 1) \cdot 4 ), which simplifies to ( a_n = 4n - 1 ).
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
The sequence 2, 5, 8, 11 is an arithmetic sequence where the first term is 2 and the common difference is 3. The nth term can be expressed using the formula: ( a_n = 2 + (n - 1) \cdot 3 ). Simplifying this gives ( a_n = 3n - 1 ). Thus, the nth term is ( 3n - 1 ).
1 +3 =4 +3+4 =11 +3+4+4 =22 +3+4+4+4 37 +3+4+4+4+4 .... u can c where i am goin here
Double it minus the previous number.
81
The nth term of a sequence is the general formula for a sequence. The nth term of this particular sequence would be n+3. This is because each step in the sequence is plus 3 higher than the previous step.
The nth term for that arithmetic progression is 4n-1. Therefore the next term (the fifth) in the sequence would be (4x5)-1 = 19.