answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the nth term of this sequence 1 3 5 7 9?

The sequence 1, 3, 5, 7, 9 is an arithmetic sequence where each term increases by 2. The nth term can be expressed as ( a_n = 2n - 1 ). Therefore, for any positive integer ( n ), the nth term of the sequence is ( 2n - 1 ).


What is the nth term for the sequence 1 6 13 22 33?

The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).


What is the nth term of the geometric sequence 4 8 16 32 ...?

The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).


What is the nth term of 0 9 22 39 60?

To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.


What is the nth term formula for 4 6 8 10?

The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).

Related Questions

What is the number sequence of 1 4 and 7?

The nth term of the sequence is 3n - 2.


What is the nth term of 1 2 4 8?

Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.Each number in this sequence is twice the previous number. The nth. term is 2n-1.


What is the nth term for 6 11 18 27 38?

The nth term of the sequence is (n + 1)2 + 2.


Nth term of the sequence 12 7 2 -3 .. I know what the next numbers in the sequence are but what is the expression for the nth term?

12 - 5(n-1)


What is the nth term for the sequence 1 6 13 22 33?

The given sequence is 1, 6, 13, 22, 33. To find the nth term, we can observe that the differences between consecutive terms are 5, 7, 9, and 11, which indicates that the sequence is quadratic. The nth term can be expressed as ( a_n = n^2 + n ), where ( a_n ) is the nth term of the sequence. Thus, the formula for the nth term is ( a_n = n^2 + n ).


What is the nth term of the geometric sequence 4 8 16 32 ...?

The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).


What is the nth term for 26 18 10 2 -6?

The nth term in this arithmetic sequence is an=26+(n-1)(-8).


What is the nth term of 98,94,88,80?

the nth term of the sequence 98, 94, 88, 80 can be expressed as 98 - (n - 1) * 2.


What is the nth term of 0 9 22 39 60?

To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.


What is the nth term formula for 4 6 8 10?

The sequence 4, 6, 8, 10 is an arithmetic sequence where each term increases by 2. The nth term formula can be expressed as ( a_n = 4 + (n - 1) \cdot 2 ). Simplifying this gives ( a_n = 2n + 2 ). Thus, the nth term of the sequence is ( 2n + 2 ).


What is the nth term of 1 4 9 16 25 36 49 64 81?

The sequence given consists of the squares of the natural numbers: (1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2). To find the nth term of the sequence, you can use the formula (n^2), where (n) is the position in the sequence. Therefore, the nth term is (n^2).


What is the nth term of 3 6 11 18 27?

The given sequence is an arithmetic sequence with a common difference that increases by 1 with each term. To find the nth term of an arithmetic sequence, you can use the formula: nth term = a + (n-1)d, where a is the first term, n is the term number, and d is the common difference. In this case, the first term (a) is 3 and the common difference (d) is increasing by 1, so the nth term would be 3 + (n-1)(n-1) = n^2 + 2.